Split learning (SL) has emerged as a computationally efficient approach for artificial intelligence (AI) model training, which can alleviate device-side computational workloads. However, complex AI model architectures pose high computational complexity to obtain the optimal model splitting. In this paper, we represent an arbitrary AI model as a directed acyclic graph (DAG), and then reformulate the optimal model splitting problem as a minimum s-t cut search problem. To solve the problem, we propose a fast DAG-based model splitting algorithm, which restructures the DAG to enable the optimal model splitting identification via a maximum flow method. Theoretical analysis indicates that the proposed algorithm is optimal. Furthermore, considering AI models with block structures, we propose a block-wise model splitting algorithm to reduce computational complexity. The algorithm abstracts each block, i.e., a component consisting of multiple layers, into a single vertex, thereby obtaining the optimal model splitting via a simplified DAG. Extensive experimental results demonstrate that the proposed algorithms can determine the optimal model splitting within milliseconds, as well as reduce training delay by 24.62%-38.95% in dynamic edge networks as compared to the state-of-the-art benchmarks.


翻译:分割学习作为一种计算高效的人工智能模型训练方法应运而生,能够有效减轻设备端的计算负载。然而,复杂的人工智能模型架构使得获取最优模型分割的计算复杂度极高。本文提出将任意人工智能模型表示为有向无环图,进而将最优模型分割问题重新表述为最小 s-t 割搜索问题。为解决该问题,我们提出一种基于有向无环图的快速模型分割算法,该算法通过重构有向无环图,使得能够借助最大流方法识别最优模型分割。理论分析表明所提算法具有最优性。进一步地,针对具有块状结构的人工智能模型,我们提出一种分块式模型分割算法以降低计算复杂度。该算法将每个由多层组成的块抽象为单一顶点,从而通过简化有向无环图获得最优模型分割。大量实验结果表明,所提算法能够在毫秒级时间内确定最优模型分割,与现有先进基准方法相比,在动态边缘网络中可降低24.62%-38.95%的训练延迟。

0
下载
关闭预览

相关内容

【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
22+阅读 · 2021年4月20日
【NeurIPS2019】图变换网络:Graph Transformer Network
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
Arxiv
0+阅读 · 12月21日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员