Graph spectral representations are fundamental in graph signal processing, offering a rigorous framework for analyzing and processing graph-structured data. The graph fractional Fourier transform (GFRFT) extends the classical graph Fourier transform (GFT) with a fractional-order parameter, enabling flexible spectral analysis while preserving mathematical consistency. The angular graph Fourier transform (AGFT) introduces angular control via GFT eigenvector rotation; however, existing constructions fail to degenerate to the GFT at zero angle, which is a critical flaw that undermines theoretical consistency and interpretability. To resolve these complementary limitations - GFRFT's lack of angular regulation and AGFT's defective degeneracy - this study proposes an angular GFRFT (AGFRFT), a unified framework that integrates fractional-order and angular spectral analyses with theoretical rigor. A degeneracy-friendly rotation matrix family ensures exact GFT degeneration at zero angle, with two AGFRFT variants (I-AGFRFT and II-AGFRFT) defined accordingly. Rigorous theoretical analyses confirm their unitarity, invertibility, and smooth parameter dependence. Both support learnable joint parameterization of the angle and fractional order, enabling adaptive spectral processing for diverse graph signals. Extensive experiments on real-world data denoising, image denoising, and point cloud denoising demonstrate that AGFRFT outperforms GFRFT and AGFT in terms of spectral concentration, reconstruction quality, and controllable spectral manipulation, establishing a robust and flexible tool for integrated angular fractional spectral analysis in graph signal processing.
翻译:图谱表示是图信号处理的基础,为分析和处理图结构数据提供了严谨的框架。图分数阶傅里叶变换(GFRFT)通过引入分数阶参数扩展了经典的图傅里叶变换(GFT),在保持数学一致性的同时实现了灵活的谱分析。角度图傅里叶变换(AGFT)通过旋转GFT特征向量引入角度控制;然而,现有构造在零角度时无法退化为GFT,这一关键缺陷损害了理论一致性和可解释性。为解决这些互补的局限性——GFRFT缺乏角度调控能力与AGFT的退化缺陷——本研究提出了角度图分数阶傅里叶变换(AGFRFT),这是一个将分数阶与角度谱分析以理论严谨性相统一的框架。一个退化友好的旋转矩阵族确保了在零角度时精确退化为GFT,并据此定义了两个AGFRFT变体(I-AGFRFT和II-AGFRFT)。严格的理论分析证实了它们的酉性、可逆性及参数平滑依赖性。两者均支持角度与分数阶的可学习联合参数化,从而实现对多样化图信号的自适应谱处理。在真实世界数据去噪、图像去噪和点云去噪上的大量实验表明,AGFRFT在谱集中度、重建质量和可控谱操作方面均优于GFRFT和AGFT,为图信号处理中的集成角度分数阶谱分析建立了一个稳健而灵活的工具。