Plant diseases pose a significant threat to global food security, necessitating accurate and interpretable disease detection methods. This study introduces an interpretable attention-guided Convolutional Neural Network (CNN), CBAM-VGG16, for plant leaf disease detection. By integrating Convolution Block Attention Module (CBAM) at each convolutional stage, the model enhances feature extraction and disease localization. Trained on five diverse plant disease datasets, our approach outperforms recent techniques, achieving high accuracy (up to 98.87%) and demonstrating robust generalization. Here, we show the effectiveness of our method through comprehensive evaluation and interpretability analysis using CBAM attention maps, Grad-CAM, Grad-CAM++, and Layer-wise Relevance Propagation (LRP). This study advances the application of explainable AI in agricultural diagnostics, offering a transparent and reliable system for smart farming. The code of our proposed work is available at https://github.com/BS0111/PlantAttentionCBAM.


翻译:植物病害对全球粮食安全构成重大威胁,亟需准确且可解释的病害检测方法。本研究提出一种用于植物叶片病害检测的可解释注意力引导卷积神经网络(CNN)——CBAM-VGG16。通过在每个卷积阶段集成卷积块注意力模块(CBAM),该模型增强了特征提取与病害定位能力。在五个多样化植物病害数据集上的训练结果表明,我们的方法优于现有技术,实现了高准确率(最高达98.87%)并展现出强大的泛化能力。本文通过CBAM注意力图、Grad-CAM、Grad-CAM++和分层相关性传播(LRP)的综合评估与可解释性分析,验证了该方法的有效性。本研究推动了可解释人工智能在农业诊断领域的应用,为智慧农业提供了透明可靠的系统。相关代码已开源:https://github.com/BS0111/PlantAttentionCBAM。

0
下载
关闭预览

相关内容

【NeurIPS2025】迈向开放世界的三维“物体性”学习
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
Arxiv
0+阅读 · 12月19日
VIP会员
相关资讯
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员