Common psychiatric and brain disorders are highly heritable and affected by a number of genetic risk factors, yet the mechanism by which these genetic factors contribute to the disorders through alterations in brain structure and function remain poorly understood. Contemporary imaging genetic studies integrate genetic and neuroimaging data to investigate how genetic variation contributes to brain disorders via intermediate neuroimaging endophenotypes. However, the large number of potential exposures (genes) and mediators (neuroimaging features) pose new challenges to the traditional mediation analysis. In this paper, we propose a novel multi-exposure-to-multi-mediator mediation model that integrates genetic, neuroimaging and phenotypic data to investigate the "geneneuroimaging-brain disorder" mediation pathway. Our method jointly reduces the dimensions of exposures and mediators into low-dimensional aggregators where the mediation effect is maximized. We further introduce sparsity into the loadings to improve the interpretability. To target the bi-convex optimization problem, we implement an efficient alternating direction method of multipliers algorithm with block coordinate updates. We provide theoretical guarantees for the convergence of our algorithm and establish the asymptotic properties of the resulting estimators. Through extensive simulations, we demonstrate that our method outperforms other competing methods in recovering true loadings and true mediation proportions across a wide range of signal strengths, noise levels, and correlation structures. We further illustrate the utility of the method through a mediation analysis that integrates genetic, brain functional connectivity and smoking behavior data from UK Biobank, and identifies critical genes that impact nicotine dependence via changing the functional connectivity in specific brain regions.


翻译:常见的精神与脑部疾病具有高度遗传性,并受多种遗传风险因素影响,但这些遗传因素如何通过改变大脑结构与功能进而导致疾病的机制仍不甚明晰。当代影像遗传学研究整合遗传与神经影像数据,旨在探究遗传变异如何通过中间神经影像内表型影响脑部疾病。然而,潜在暴露(基因)与中介(神经影像特征)数量庞大,对传统中介分析提出了新挑战。本文提出一种新型多暴露-多中介中介模型,整合遗传、神经影像与表型数据,以探究“基因-神经影像-脑部疾病”的中介路径。该方法将暴露与中介的维度联合降至低维聚合变量,使中介效应最大化,并通过在载荷中引入稀疏性以提升可解释性。针对该双凸优化问题,我们实现了基于块坐标更新的高效交替方向乘子法算法。我们为算法收敛性提供了理论保证,并建立了所得估计量的渐近性质。通过大量模拟实验,我们证明在多种信号强度、噪声水平及相关结构下,本方法在还原真实载荷与真实中介比例方面均优于其他竞争方法。进一步,我们通过对英国生物银行中遗传数据、脑功能连接数据与吸烟行为数据的中介分析,展示了该方法的应用价值,识别出通过改变特定脑区功能连接影响尼古丁依赖的关键基因。

0
下载
关闭预览

相关内容

【TPAMI2022】双曲深度神经网络研究综述
专知会员服务
66+阅读 · 2021年12月29日
专知会员服务
34+阅读 · 2021年8月16日
专知会员服务
26+阅读 · 2021年7月17日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
国家自然科学基金
4+阅读 · 2015年12月31日
VIP会员
相关VIP内容
【TPAMI2022】双曲深度神经网络研究综述
专知会员服务
66+阅读 · 2021年12月29日
专知会员服务
34+阅读 · 2021年8月16日
专知会员服务
26+阅读 · 2021年7月17日
Top
微信扫码咨询专知VIP会员