This paper introduces the Trimmed Functional Empirical Process (TFEP) as a robust framework for statistical inference when dealing with heavy-tailed or skewed distributions, where classical moments such as the mean or variance may be infinite or undefined. Standard approaches including the classical Functional Empirical Process (FEP), break down under such conditions, especially for distributions like Pareto, Cauchy, low degree of freedom Student-t, due to their reliance on finite-variance assumptions to guarantee asymptotic convergence. The TFEP approach addresses these limitations by trimming a controlled proportion of extreme order statistics, thereby stabilizing the empirical process and restoring asymptotic Gaussian behavior. We establish the weak convergence of the TFEP under mild regularity conditions and derive new asymptotic distributions for one-sample and twosample problems. These theoretical developments lead to robust confidence intervals for truncated means, variances, and their differences or ratios. The efficiency and reliability of the TFEP are supported by extensive Monte Carlo experiments and an empirical application to Senegalese income data. In all scenarios, the TFEP provides accurate inference where both Gaussian-based methods and the classical FEP break down. The methodology thus offers a powerful and flexible tool for statistical analysis in heavy-tailed and non-standard environments.


翻译:本文提出了修整函数经验过程(Trimmed Functional Empirical Process, TFEP)作为一种稳健的统计推断框架,用于处理厚尾或偏态分布,其中经典矩(如均值或方差)可能无限或未定义。标准方法(包括经典函数经验过程(FEP))在此类条件下失效,尤其是对于帕累托分布、柯西分布、低自由度学生t分布等,因为这些方法依赖于有限方差假设来保证渐近收敛。TFEP方法通过修整受控比例的极端顺序统计量,稳定了经验过程并恢复了渐近高斯行为,从而解决了这些局限性。我们在温和的正则条件下建立了TFEP的弱收敛性,并推导了单样本和双样本问题的新渐近分布。这些理论进展为截断均值、方差及其差值或比率提供了稳健的置信区间。TFEP的效率和可靠性得到了广泛的蒙特卡洛实验以及对塞内加尔收入数据的实证应用的支持。在所有场景中,TFEP在基于高斯的方法和经典FEP均失效的情况下提供了准确的推断。因此,该方法为厚尾和非标准环境下的统计分析提供了一个强大而灵活的工具。

0
下载
关闭预览

相关内容

【牛津博士论文】无限维空间中的广义变分推断
专知会员服务
19+阅读 · 8月11日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【牛津博士论文】无限维空间中的广义变分推断
专知会员服务
19+阅读 · 8月11日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员