Efficient simulation of complex plasma dynamics is crucial for advancing fusion energy research. Particle-in-Cell (PIC) Monte Carlo (MC) simulations provide insights into plasma behavior, including turbulence and confinement, which are essential for optimizing fusion reactor performance. Transitioning to exascale simulations introduces significant challenges, with traditional file input/output (I/O) inefficiencies remaining a key bottleneck. This work advances BIT1, an electrostatic PIC MC code, by improving the particle mover with OpenMP task-based parallelism, integrating the openPMD streaming API, and enabling in-memory data streaming with ADIOS2's Sustainable Staging Transport (SST) engine to enhance I/O performance, computational efficiency, and system storage utilization. We employ profiling tools such as gprof, perf, IPM and Darshan, which provide insights into computation, communication, and I/O operations. We implement time-dependent data checkpointing with the openPMD API enabling seamless data movement and in-situ visualization for real-time analysis without interrupting the simulation. We demonstrate improvements in simulation runtime, data accessibility and real-time insights by comparing traditional file I/O with the ADIOS2 BP4 and SST backends. The proposed hybrid BIT1 openPMD SST enhancement introduces a new paradigm for real-time scientific discovery in plasma simulations, enabling faster insights and more efficient use of exascale computing resources.


翻译:高效模拟复杂等离子体动力学对推进聚变能研究至关重要。粒子网格(PIC)蒙特卡洛(MC)模拟能够揭示等离子体行为(包括湍流与约束特性),为优化聚变反应堆性能提供关键依据。迈向E级计算模拟面临显著挑战,其中传统文件输入/输出(I/O)效率低下仍是主要瓶颈。本研究通过以下方式改进静电PIC MC代码BIT1:采用基于OpenMP任务的并行化优化粒子推进器,集成openPMD流式API,并利用ADIOS2可持续暂存传输(SST)引擎实现内存数据流,以提升I/O性能、计算效率与系统存储利用率。我们使用gprof、perf、IPM和Darshan等性能剖析工具,深入分析计算、通信及I/O操作。通过openPMD API实现时间依赖的数据检查点保存,支持无缝数据迁移与原位可视化,可在不中断模拟的前提下进行实时分析。通过对比传统文件I/O与ADIOS2 BP4及SST后端,我们验证了模拟运行时间、数据可访问性与实时分析能力的显著提升。所提出的混合BIT1 openPMD SST增强方案为等离子体模拟中的实时科学发现建立了新范式,有助于加速科学洞察并更高效地利用E级计算资源。

0
下载
关闭预览

相关内容

Top
微信扫码咨询专知VIP会员