Recently, many new challenges in Compressed Sensing (CS), such as block sparsity, arose. In this paper, we present a new algorithm for solving CS with block sparse constraints (BSC) in complex fields. Firstly, based on block sparsity characteristics, we propose a new model to deal with CS with BSC and analyze the properties of the functions involved in this model. We then present a new $\tau$-stationary point and analyze corresponding first-order sufficient and necessary conditions. That ensures we to further develop a block Newton hard-thresholding pursuit (BNHTP) algorithm for efficiently solving CS with BSC. Finally, preliminary numerical experiments demonstrate that the BNHTP algorithm has superior performance in terms of recovery accuracy and calculation time when compared with the classical AMP algorithm.


翻译:最近,在压缩遥感(CS)中出现了许多新的挑战,例如块块宽度。在本文中,我们提出了一个新的算法,以在复杂领域以块小限制(BSC)解决块小限制(BSC)解决块小限制(CS)。首先,基于块宽度特点,我们提出了一个新的模型,以处理块宽度特点(CS),并分析该模型所涉功能的特性。然后我们提出一个新的美元固定点,并分析相应的一级足够和必要的条件。这确保了我们进一步发展一个块牛顿硬藏量追踪(BNHTP)算法(BNHTP),以便有效地与 BSC 解决 CS 。最后,初步数字实验表明,BNHTP算法在回收准确性和计算时间方面表现优异于传统的 AMP算法。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员