Recently it has shown that the policy-gradient methods for reinforcement learning have been utilized to train deep end-to-end systems on natural language processing tasks. What's more, with the complexity of understanding image content and diverse ways of describing image content in natural language, image captioning has been a challenging problem to deal with. To the best of our knowledge, most state-of-the-art methods follow a pattern of sequential model, such as recurrent neural networks (RNN). However, in this paper, we propose a novel architecture for image captioning with deep reinforcement learning to optimize image captioning tasks. We utilize two networks called "policy network" and "value network" to collaboratively generate the captions of images. The experiments are conducted on Microsoft COCO dataset, and the experimental results have verified the effectiveness of the proposed method.

7
下载
关闭预览

相关内容

图像字幕(Image Captioning),是指从图像生成文本描述的过程,主要根据图像中物体和物体的动作。

Image captioning has attracted ever-increasing research attention in the multimedia community. To this end, most cutting-edge works rely on an encoder-decoder framework with attention mechanisms, which have achieved remarkable progress. However, such a framework does not consider scene concepts to attend visual information, which leads to sentence bias in caption generation and defects the performance correspondingly. We argue that such scene concepts capture higher-level visual semantics and serve as an important cue in describing images. In this paper, we propose a novel scene-based factored attention module for image captioning. Specifically, the proposed module first embeds the scene concepts into factored weights explicitly and attends the visual information extracted from the input image. Then, an adaptive LSTM is used to generate captions for specific scene types. Experimental results on Microsoft COCO benchmark show that the proposed scene-based attention module improves model performance a lot, which outperforms the state-of-the-art approaches under various evaluation metrics.

0
4
下载
预览

The recent advances of deep learning in both computer vision (CV) and natural language processing (NLP) provide us a new way of understanding semantics, by which we can deal with more challenging tasks such as automatic description generation from natural images. In this challenge, the encoder-decoder framework has achieved promising performance when a convolutional neural network (CNN) is used as image encoder and a recurrent neural network (RNN) as decoder. In this paper, we introduce a sequential guiding network that guides the decoder during word generation. The new model is an extension of the encoder-decoder framework with attention that has an additional guiding long short-term memory (LSTM) and can be trained in an end-to-end manner by using image/descriptions pairs. We validate our approach by conducting extensive experiments on a benchmark dataset, i.e., MS COCO Captions. The proposed model achieves significant improvement comparing to the other state-of-the-art deep learning models.

0
5
下载
预览

Recently, much advance has been made in image captioning, and an encoder-decoder framework has been adopted by all the state-of-the-art models. Under this framework, an input image is encoded by a convolutional neural network (CNN) and then translated into natural language with a recurrent neural network (RNN). The existing models counting on this framework merely employ one kind of CNNs, e.g., ResNet or Inception-X, which describe image contents from only one specific view point. Thus, the semantic meaning of an input image cannot be comprehensively understood, which restricts the performance of captioning. In this paper, in order to exploit the complementary information from multiple encoders, we propose a novel Recurrent Fusion Network (RFNet) for tackling image captioning. The fusion process in our model can exploit the interactions among the outputs of the image encoders and then generate new compact yet informative representations for the decoder. Experiments on the MSCOCO dataset demonstrate the effectiveness of our proposed RFNet, which sets a new state-of-the-art for image captioning.

0
3
下载
预览

Image captioning is a challenging task that combines the field of computer vision and natural language processing. A variety of approaches have been proposed to achieve the goal of automatically describing an image, and recurrent neural network (RNN) or long-short term memory (LSTM) based models dominate this field. However, RNNs or LSTMs cannot be calculated in parallel and ignore the underlying hierarchical structure of a sentence. In this paper, we propose a framework that only employs convolutional neural networks (CNNs) to generate captions. Owing to parallel computing, our basic model is around 3 times faster than NIC (an LSTM-based model) during training time, while also providing better results. We conduct extensive experiments on MSCOCO and investigate the influence of the model width and depth. Compared with LSTM-based models that apply similar attention mechanisms, our proposed models achieves comparable scores of BLEU-1,2,3,4 and METEOR, and higher scores of CIDEr. We also test our model on the paragraph annotation dataset, and get higher CIDEr score compared with hierarchical LSTMs

0
21
下载
预览

Image captioning has been recently gaining a lot of attention thanks to the impressive achievements shown by deep captioning architectures, which combine Convolutional Neural Networks to extract image representations, and Recurrent Neural Networks to generate the corresponding captions. At the same time, a significant research effort has been dedicated to the development of saliency prediction models, which can predict human eye fixations. Even though saliency information could be useful to condition an image captioning architecture, by providing an indication of what is salient and what is not, research is still struggling to incorporate these two techniques. In this work, we propose an image captioning approach in which a generative recurrent neural network can focus on different parts of the input image during the generation of the caption, by exploiting the conditioning given by a saliency prediction model on which parts of the image are salient and which are contextual. We show, through extensive quantitative and qualitative experiments on large scale datasets, that our model achieves superior performances with respect to captioning baselines with and without saliency, and to different state of the art approaches combining saliency and captioning.

0
7
下载
预览

This paper discusses and demonstrates the outcomes from our experimentation on Image Captioning. Image captioning is a much more involved task than image recognition or classification, because of the additional challenge of recognizing the interdependence between the objects/concepts in the image and the creation of a succinct sentential narration. Experiments on several labeled datasets show the accuracy of the model and the fluency of the language it learns solely from image descriptions. As a toy application, we apply image captioning to create video captions, and we advance a few hypotheses on the challenges we encountered.

0
8
下载
预览

Recently, much advance has been made in image captioning, and an encoder-decoder framework has achieved outstanding performance for this task. In this paper, we propose an extension of the encoder-decoder framework by adding a component called guiding network. The guiding network models the attribute properties of input images, and its output is leveraged to compose the input of the decoder at each time step. The guiding network can be plugged into the current encoder-decoder framework and trained in an end-to-end manner. Hence, the guiding vector can be adaptively learned according to the signal from the decoder, making itself to embed information from both image and language. Additionally, discriminative supervision can be employed to further improve the quality of guidance. The advantages of our proposed approach are verified by experiments carried out on the MS COCO dataset.

0
6
下载
预览

Video captioning is the task of automatically generating a textual description of the actions in a video. Although previous work (e.g. sequence-to-sequence model) has shown promising results in abstracting a coarse description of a short video, it is still very challenging to caption a video containing multiple fine-grained actions with a detailed description. This paper aims to address the challenge by proposing a novel hierarchical reinforcement learning framework for video captioning, where a high-level Manager module learns to design sub-goals and a low-level Worker module recognizes the primitive actions to fulfill the sub-goal. With this compositional framework to reinforce video captioning at different levels, our approach significantly outperforms all the baseline methods on a newly introduced large-scale dataset for fine-grained video captioning. Furthermore, our non-ensemble model has already achieved the state-of-the-art results on the widely-used MSR-VTT dataset.

0
20
下载
预览

The existing image captioning approaches typically train a one-stage sentence decoder, which is difficult to generate rich fine-grained descriptions. On the other hand, multi-stage image caption model is hard to train due to the vanishing gradient problem. In this paper, we propose a coarse-to-fine multi-stage prediction framework for image captioning, composed of multiple decoders each of which operates on the output of the previous stage, producing increasingly refined image descriptions. Our proposed learning approach addresses the difficulty of vanishing gradients during training by providing a learning objective function that enforces intermediate supervisions. Particularly, we optimize our model with a reinforcement learning approach which utilizes the output of each intermediate decoder's test-time inference algorithm as well as the output of its preceding decoder to normalize the rewards, which simultaneously solves the well-known exposure bias problem and the loss-evaluation mismatch problem. We extensively evaluate the proposed approach on MSCOCO and show that our approach can achieve the state-of-the-art performance.

0
6
下载
预览

Accelerated by the tremendous increase in Internet bandwidth and storage space, video data has been generated, published and spread explosively, becoming an indispensable part of today's big data. In this paper, we focus on reviewing two lines of research aiming to stimulate the comprehension of videos with deep learning: video classification and video captioning. While video classification concentrates on automatically labeling video clips based on their semantic contents like human actions or complex events, video captioning attempts to generate a complete and natural sentence, enriching the single label as in video classification, to capture the most informative dynamics in videos. In addition, we also provide a review of popular benchmarks and competitions, which are critical for evaluating the technical progress of this vibrant field.

0
8
下载
预览
小贴士
相关论文
Chen Shen,Rongrong Ji,Fuhai Chen,Xiaoshuai Sun,Xiangming Li
4+阅读 · 2019年8月7日
A sequential guiding network with attention for image captioning
Daouda Sow,Zengchang Qin,Mouhamed Niasse,Tao Wan
5+阅读 · 2019年2月8日
Recurrent Fusion Network for Image Captioning
Wenhao Jiang,Lin Ma,Yu-Gang Jiang,Wei Liu,Tong Zhang
3+阅读 · 2018年7月31日
Qingzhong Wang,Antoni B. Chan
21+阅读 · 2018年5月23日
Marcella Cornia,Lorenzo Baraldi,Giuseppe Serra,Rita Cucchiara
7+阅读 · 2018年5月21日
Vikram Mullachery,Vishal Motwani
8+阅读 · 2018年5月13日
Wenhao Jiang,Lin Ma,Xinpeng Chen,Hanwang Zhang,Wei Liu
6+阅读 · 2018年4月3日
Xin Wang,Wenhu Chen,Jiawei Wu,Yuan-Fang Wang,William Yang Wang
20+阅读 · 2018年3月29日
Jiuxiang Gu,Jianfei Cai,Gang Wang,Tsuhan Chen
6+阅读 · 2018年3月14日
Zuxuan Wu,Ting Yao,Yanwei Fu,Yu-Gang Jiang
8+阅读 · 2018年2月22日
相关VIP内容
Top