相关内容

强化学习(RL)是机器学习的一个领域,与软件代理应如何在环境中采取行动以最大化累积奖励的概念有关。除了监督学习和非监督学习外,强化学习是三种基本的机器学习范式之一。 强化学习与监督学习的不同之处在于,不需要呈现带标签的输入/输出对,也不需要显式纠正次优动作。相反,重点是在探索(未知领域)和利用(当前知识)之间找到平衡。 该环境通常以马尔可夫决策过程(MDP)的形式陈述,因为针对这种情况的许多强化学习算法都使用动态编程技术。经典动态规划方法和强化学习算法之间的主要区别在于,后者不假设MDP的确切数学模型,并且针对无法采用精确方法的大型MDP。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

题目:Applied Reinforcement Learning with Python With OpenAI Gym, Tensorflow, and Keras

深入研究强化学习算法,并通过Python将它们应用到不同的用例中。这本书涵盖了重要的主题,如策略梯度和Q学习,并利用框架,如Tensorflow, Keras,和OpenAI Gym。

Python中的应用增强学习向您介绍了强化学习(RL)算法背后的理论和用于实现它们的代码。您将在指导下了解OpenAI Gym的特性,从使用标准库到创建自己的环境,然后了解如何构建强化学习问题,以便研究、开发和部署基于rl的解决方案。

你将学习:

  • 用Python实现强化学习
  • 使用AI框架,如OpenAI Gym、Tensorflow和Keras
  • 通过云资源部署和培训基于增强学习的解决方案
  • 应用强化学习的实际应用

这本书是给谁看的: 数据科学家、机器学习工程师和软件工程师熟悉机器学习和深度学习的概念。

地址:

https://www.springerprofessional.de/en/applied-reinforcement-learning-with-python/17098944

目录:

第1章 强化学习导论

在过去的一年里,深度学习技术的不断扩散和发展给各个行业带来了革命性的变化。毫无疑问,这个领域最令人兴奋的部分之一是强化学习(RL)。这本身往往是许多通用人工智能应用程序的基础,例如学习玩视频游戏或下棋的软件。强化学习的好处是,假设可以将问题建模为包含操作、环境和代理的框架,那么代理就可以熟悉大量的任务。假设,解决问题的范围可以从简单的游戏,更复杂的3d游戏,自动驾驶汽车教学如何挑选和减少乘客在各种不同的地方以及教一个机械手臂如何把握对象和地点在厨房柜台上。

第二章 强化学习算法

读者应该知道,我们将利用各种深度学习和强化学习的方法在这本书。然而,由于我们的重点将转移到讨论实现和这些算法如何在生产环境中工作,我们必须花一些时间来更详细地介绍算法本身。因此,本章的重点将是引导读者通过几个强化学习算法的例子,通常应用和展示他们在使用Open AI gym 不同的问题。

第三章 强化学习算法:Q学习及其变体

随着策略梯度和Actor-Critic模型的初步讨论的结束,我们现在可以讨论读者可能会发现有用的替代深度学习算法。具体来说,我们将讨论Q学习、深度Q学习以及深度确定性策略梯度。一旦我们了解了这些,我们就可以开始处理更抽象的问题,更具体的领域,这将教会用户如何处理不同任务的强化学习。

第四章 通过强化学习做市场

除了在许多书中发现的强化学习中的一些标准问题之外,最好看看那些答案既不客观也不完全解决的领域。在金融领域,尤其是强化学习领域,最好的例子之一就是做市。我们将讨论学科本身,提出一些不基于机器学习的基线方法,然后测试几种基于强化学习的方法。

第五章 自定义OpenAI强化学习环境

在我们的最后一章,我们将专注于Open AI Gym,但更重要的是尝试理解我们如何创建我们自己的自定义环境,这样我们可以处理更多的典型用例。本章的大部分内容将集中在我对开放人工智能的编程实践的建议,以及我如何编写这个软件的建议。最后,在我们完成创建环境之后,我们将继续集中精力解决问题。对于这个例子,我们将集中精力尝试创建和解决一个新的视频游戏。

成为VIP会员查看完整内容
0
78
小贴士
相关VIP内容
专知会员服务
135+阅读 · 2020年4月19日
专知会员服务
50+阅读 · 2020年3月2日
专知会员服务
79+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
41+阅读 · 2019年12月23日
强化学习最新教程,17页pdf
专知会员服务
55+阅读 · 2019年10月11日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
22+阅读 · 2019年9月24日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
11+阅读 · 2019年5月24日
强化学习资源列表,Updating...
机器学习算法与Python学习
12+阅读 · 2018年12月30日
OpenAI官方发布:强化学习中的关键论文
专知
10+阅读 · 2018年12月12日
【深度强化学习教程】高质量PyTorch实现集锦
强化学习族谱
CreateAMind
10+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
gym-gazebo2, a toolkit for reinforcement learning using ROS 2 and Gazebo
Nestor Gonzalez Lopez,Yue Leire Erro Nuin,Elias Barba Moral,Lander Usategui San Juan,Alejandro Solano Rueda,Víctor Mayoral Vilches,Risto Kojcev
5+阅读 · 2019年3月14日
Yu Cheng,Mo Yu,Xiaoxiao Guo,Bowen Zhou
11+阅读 · 2019年1月26日
Tuomas Haarnoja,Aurick Zhou,Sehoon Ha,Jie Tan,George Tucker,Sergey Levine
4+阅读 · 2018年12月26日
On Improving Decentralized Hysteretic Deep Reinforcement Learning
Xueguang Lu,Christopher Amato
3+阅读 · 2018年12月15日
Borja Ibarz,Jan Leike,Tobias Pohlen,Geoffrey Irving,Shane Legg,Dario Amodei
4+阅读 · 2018年11月15日
Image Captioning based on Deep Reinforcement Learning
Haichao Shi,Peng Li,Bo Wang,Zhenyu Wang
7+阅读 · 2018年9月13日
A Multi-Objective Deep Reinforcement Learning Framework
Thanh Thi Nguyen
9+阅读 · 2018年6月27日
Mohammadhosein Hasanbeig,Alessandro Abate,Daniel Kroening
5+阅读 · 2018年4月22日
Chiyuan Zhang,Oriol Vinyals,Remi Munos,Samy Bengio
7+阅读 · 2018年4月20日
Siqi Liu,Zhenhai Zhu,Ning Ye,Sergio Guadarrama,Kevin Murphy
6+阅读 · 2018年3月12日
Top