Industrial Control Systems (ICS) in water distribution and treatment face cyber-physical attacks exploiting network and physical vulnerabilities. Current water system anomaly detection methods rely on correlations, yielding high false alarms and poor root cause analysis. We propose a Causal Digital Twin (CDT) framework for water infrastructures, combining causal inference with digital twin modeling. CDT supports association for pattern detection, intervention for system response, and counterfactual analysis for water attack prevention. Evaluated on water-related datasets SWaT, WADI, and HAI, CDT shows 90.8\% compliance with physical constraints and structural Hamming distance 0.133 $\pm$ 0.02. F1-scores are $0.944 \pm 0.014$ (SWaT), $0.902 \pm 0.021$ (WADI), $0.923 \pm 0.018$ (HAI, $p<0.0024$). CDT reduces false positives by 74\%, achieves 78.4\% root cause accuracy, and enables counterfactual defenses reducing attack success by 73.2\%. Real-time performance at 3.2 ms latency ensures safe and interpretable operation for medium-scale water systems.
翻译:供水与污水处理领域的工业控制系统(ICS)面临着利用网络和物理漏洞的信息物理攻击。当前水系统异常检测方法依赖于相关性分析,导致误报率高且根本原因分析能力不足。我们提出了一种用于水基础设施的因果数字孪生(CDT)框架,将因果推断与数字孪生建模相结合。CDT支持用于模式检测的关联分析、用于系统响应的干预分析以及用于水攻击预防的反事实分析。在水相关数据集SWaT、WADI和HAI上的评估表明,CDT对物理约束的符合率达到90.8%,结构汉明距离为0.133 ± 0.02。F1分数分别为0.944 ± 0.014(SWaT)、0.902 ± 0.021(WADI)、0.923 ± 0.018(HAI,p<0.0024)。CDT将误报率降低了74%,实现了78.4%的根本原因识别准确率,并通过反事实防御使攻击成功率降低了73.2%。其实时性能延迟为3.2毫秒,确保了中等规模水系统的安全且可解释的运行。