Advancements in Noisy Intermediate-Scale Quantum (NISQ) computing are steadily pushing these systems toward outperforming classical supercomputers on specific, well-defined computational tasks. In this work, we explore and control quantum chaos in NISQ systems using discrete-time quantum walks (DTQW) on cyclic graphs. To efficiently implement quantum walks on NISQ hardware, we employ the quantum Fourier transform (QFT) to diagonalize the conditional shift operator, optimizing circuit depth and fidelity. We experimentally realize the transition from quantum chaos to order via DTQW dynamics on both odd and even cyclic graphs, specifically 3- and 4-cycle graphs, using the counterintuitive Parrondo's paradox strategy across three different NISQ devices. While the 4-cycle graphs exhibit high-fidelity quantum evolution, the 3-cycle implementation shows significant fidelity improvement when augmented with dynamical decoupling pulses. Our results demonstrate a practical approach to probing and harnessing controlled chaotic dynamics on real quantum hardware, laying the groundwork for future quantum algorithms and cryptographic protocols based on quantum walks.
翻译:噪声中等规模量子(NISQ)计算的进展正稳步推动这些系统在特定、明确定义的计算任务上超越经典超级计算机。本研究通过循环图上的离散时间量子行走(DTQW)探索并控制NISQ系统中的量子混沌。为在NISQ硬件上高效实现量子行走,我们采用量子傅里叶变换(QFT)对角化条件移位算符,以优化电路深度与保真度。我们通过DTQW动力学在奇偶循环图(具体为3-环与4-环图)上实验实现了从量子混沌到有序的转变,并在三台不同的NISQ设备上应用了反直觉的Parrondo悖论策略。实验表明,4-环图展现出高保真度的量子演化,而3-环图在引入动态解耦脉冲后保真度显著提升。我们的研究结果为在实际量子硬件上探测与利用受控混沌动力学提供了一种实用方法,为未来基于量子行走的量子算法与密码协议奠定了基础。