This paper presents a learning-based extension to a Circular Field (CF)-based motion planner for efficient, collision-free trajectory generation in cluttered environments. The proposed approach overcomes the limitations of hand-tuned force field parameters by employing a deep neural network trained to infer optimal planner gains from a single depth image of the scene. The pipeline incorporates a CUDA-accelerated perception module, a predictive agent-based planning strategy, and a dataset generated through Bayesian optimization in simulation. The resulting framework enables real-time planning without manual parameter tuning and is validated both in simulation and on a Franka Emika Panda robot. Experimental results demonstrate successful task completion and improved generalization compared to classical planners.
翻译:本文提出了一种基于学习的扩展方法,用于基于环形场(CF)的运动规划器,以在杂乱环境中高效生成无碰撞轨迹。该方法通过采用深度神经网络来克服手动调整力场参数的局限性,该网络经过训练,能够从场景的单个深度图像中推断出最优规划器增益。该流程包含一个CUDA加速的感知模块、一种基于预测代理的规划策略,以及通过贝叶斯优化在仿真中生成的数据集。所提出的框架实现了无需手动参数调整的实时规划,并在仿真和Franka Emika Panda机器人上进行了验证。实验结果表明,与经典规划器相比,该方法成功完成了任务,并展现出更好的泛化能力。