With the increasing popularity of deep learning in image processing, many learned lossless image compression methods have been proposed recently. One group of algorithms that have shown good performance are based on learned pixel-based auto-regressive models, however, their sequential nature prevents easily parallelized computations and leads to long decoding times. Another popular group of algorithms are based on scale-based auto-regressive models and can provide competitive compression performance while also enabling simple parallelization and much shorter decoding times. However, their major drawback are the used large neural networks and high computational complexity. This paper presents an interpolation based learned lossless image compression method which falls in the scale-based auto-regressive models group. The method achieves better than or on par compression performance with the recent scale-based auto-regressive models, yet requires more than 10x less neural network parameters and encoding/decoding computation complexity. These achievements are due to the contributions/findings in the overall system and neural network architecture design, such as sharing interpolator neural networks across different scales, using separate neural networks for different parameters of the probability distribution model and performing the processing in the YCoCg-R color space instead of the RGB color space.


翻译:随着在图像处理过程中的深层学习越来越受欢迎,最近提出了许多不损失的图像压缩方法。 一组算法显示业绩良好,这些算法基于以像素为基础的基于自动递减模式,但是,这些算法的相继性质防止了容易平行的计算并导致长期解码时间。 另一组流行的算法基于基于基于规模的自动递减模型,可以提供竞争性压缩性能,同时促成简单的平行和较短的解码时间。 然而,它们的主要缺点是所使用的大型神经网络和高计算复杂性。 本文展示了一种基于内推法的不损失的无损图像压缩方法,该方法属于基于规模的自动递减模型组。 该方法比最近基于规模的自动递减模型的压缩性能好,或更接近或更接近压缩性能,但需要10x以上的神经网络参数和编码/解码计算复杂性。 这些成就归功于整个系统和神经网络结构设计中的贡献/调查,例如在不同尺度上共享内部神经网络网络,使用不同的颜色网络,用于不同的空间概率模型的颜色分布。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
专知会员服务
25+阅读 · 2021年4月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月26日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员