This work evaluates the effectiveness of spatiotemporal Graph Neural Networks (GNNs) for multi-store retail sales forecasting and compares their performance against ARIMA, LSTM, and XGBoost baselines. Using weekly sales data from 45 Walmart stores, we construct a relational forecasting framework that models inter-store dependencies through a learned adaptive graph. The proposed STGNN predicts log-differenced sales and reconstructs final values through a residual path, enabling stable training and improved generalisation. Experiments show that STGNN achieves the lowest overall forecasting error, outperforming all baselines in Normalised Total Absolute Error, P90 MAPE, and variance of MAPE across stores. Analysis of the learned adjacency matrix reveals meaningful functional store clusters and high-influence nodes that emerge without geographic metadata. These results demonstrate that relational structure significantly improves forecast quality in interconnected retail environments and establishes STGNNs as a robust modelling choice for multi-store demand prediction.
翻译:本研究评估了时空图神经网络(GNNs)在多门店零售销售预测中的有效性,并将其性能与ARIMA、LSTM和XGBoost基线模型进行了比较。基于45家沃尔玛门店的周度销售数据,我们构建了一个关系预测框架,通过学习得到的自适应图来建模门店间的依赖关系。所提出的STGNN模型预测对数差分后的销售额,并通过残差路径重建最终值,从而实现稳定的训练和更好的泛化能力。实验表明,STGNN实现了最低的整体预测误差,在归一化总绝对误差、P90 MAPE以及各门店MAPE方差方面均优于所有基线模型。对学习得到的邻接矩阵的分析揭示了有意义的功能性门店聚类和无需地理元数据即可出现的高影响力节点。这些结果表明,关系结构显著提升了互联零售环境中的预测质量,并确立了STGNN作为多门店需求预测的稳健建模选择。