Alzheimer's disease (AD) and its prodromal stage, Mild Cognitive Impairment (MCI), are associated with subtle declines in memory, attention, and language that often go undetected until late in progression. Traditional diagnostic tools such as MRI and neuropsychological testing are invasive, costly, and poorly suited for population-scale monitoring. Social platforms, by contrast, produce continuous multimodal traces that can serve as ecologically valid indicators of cognition. In this paper, we introduce Cogniscope, a simulation framework that generates social-media-style interaction data for studying digital biomarkers of cognitive health. The framework models synthetic users with heterogeneous trajectories, embedding micro-tasks such as video summarization and lightweight question answering into content consumption streams. These interactions yield linguistic markers (semantic drift, disfluency) and behavioral signals (watch time, pausing, sharing), which can be fused to evaluate early detection models. We demonstrate the framework's use through ablation and sensitivity analyses, showing how detection performance varies across modalities, noise levels, and temporal windows. To support reproducibility, we release the generator code, parameter configurations, and synthetic datasets. By providing a controllable and ethically safe testbed, Cogniscope enables systematic investigation of multimodal cognitive markers and offers the community a benchmark resource that complements real-world validation studies.
翻译:阿尔茨海默病(AD)及其前驱阶段——轻度认知障碍(MCI),常伴随记忆、注意力和语言的微妙衰退,这些衰退往往在病程晚期才被察觉。传统的诊断工具如磁共振成像(MRI)和神经心理学测试具有侵入性、成本高昂,且不适合大规模人群监测。相比之下,社交平台产生的连续多模态痕迹可作为认知功能的生态效度指标。本文介绍Cogniscope,一个用于研究认知健康数字生物标志物的社交媒体式互动数据生成仿真框架。该框架模拟具有异质性轨迹的合成用户,将视频摘要和轻量级问答等微任务嵌入内容消费流中。这些互动产生语言标记(语义漂移、不流畅性)和行为信号(观看时长、暂停、分享),可融合用于评估早期检测模型。我们通过消融实验和敏感性分析展示了该框架的用途,揭示了检测性能如何随模态、噪声水平和时间窗口变化。为支持可重复性,我们公开了生成器代码、参数配置和合成数据集。通过提供一个可控且符合伦理安全的测试平台,Cogniscope支持对多模态认知标志物进行系统性研究,并为学界提供了一个补充现实世界验证研究的基准资源。