Clean-label (CL) attack is a form of data poisoning attack where an adversary modifies only the textual input of the training data, without requiring access to the labeling function. CL attacks are relatively unexplored in NLP, as compared to label flipping (LF) attacks, where the latter additionally requires access to the labeling function as well. While CL attacks are more resilient to data sanitization and manual relabeling methods than LF attacks, they often demand as high as ten times the poisoning budget than LF attacks. In this work, we first introduce an Adversarial Clean Label attack which can adversarially perturb in-class training examples for poisoning the training set. We then show that an adversary can significantly bring down the data requirements for a CL attack, using the aforementioned approach, to as low as 20% of the data otherwise required. We then systematically benchmark and analyze a number of defense methods, for both LF and CL attacks, some previously employed solely for LF attacks in the textual domain and others adapted from computer vision. We find that text-specific defenses greatly vary in their effectiveness depending on their properties.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年7月20日
Arxiv
0+阅读 · 2023年7月19日
Arxiv
15+阅读 · 2020年10月26日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
Arxiv
0+阅读 · 2023年7月20日
Arxiv
0+阅读 · 2023年7月19日
Arxiv
15+阅读 · 2020年10月26日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员