用已知某种或某些特性的样本作为训练集,以建立一个数学模型(如模式识别中的判别模型,人工神经网络法中的权重模型等),再用已建立的模型来预测未知样本,此种方法称为有监督学习。是最常见的机器学习方法。

We present a new flavor of Variational Autoencoder (VAE) that interpolates seamlessly between unsupervised, semi-supervised and fully supervised learning domains. We show that unlabeled datapoints not only boost unsupervised tasks, but also the classification performance. Vice versa, every label not only improves classification, but also unsupervised tasks. The proposed architecture is simple: A classification layer is connected to the topmost encoder layer, and then combined with the resampled latent layer for the decoder. The usual evidence lower bound (ELBO) loss is supplemented with a supervised loss target on this classification layer that is only applied for labeled datapoints. This simplicity allows for extending any existing VAE model to our proposed semi-supervised framework with minimal effort. In the context of classification, we found that this approach even outperforms a direct supervised setup.

0+
0+
下载
预览

We introduce a new neural network-based continual learning algorithm, dubbed as Uncertainty-regularized Continual Learning (UCL), which builds on traditional Bayesian online learning framework with variational inference. We focus on two significant drawbacks of the recently proposed regularization-based methods: a) considerable additional memory cost for determining the per-weight regularization strengths and b) the absence of gracefully forgetting scheme, which can prevent performance degradation in learning new tasks. In this paper, we show UCL can solve these two problems by introducing a fresh interpretation on the Kullback-Leibler (KL) divergence term of the variational lower bound for Gaussian mean-field approximation. Based on the interpretation, we propose the notion of node-wise uncertainty, which drastically reduces the number of additional parameters for implementing per-weight regularization. Moreover, we devise two additional regularization terms that enforce stability by freezing important parameters for past tasks and allow plasticity by controlling the actively learning parameters for a new task. Through extensive experiments, we show UCL convincingly outperforms most of recent state-of-the-art baselines not only on popular supervised learning benchmarks, but also on challenging lifelong reinforcement learning tasks. The source code of our algorithm is available at https://github.com/csm9493/UCL.

0+
0+
下载
预览

Although machine learning has become a powerful tool to augment doctors in clinical analysis, the immense amount of labeled data that is necessary to train supervised learning approaches burdens each development task as time and resource intensive. The vast majority of dense clinical information is stored in written reports, detailing pertinent patient information. The challenge with utilizing natural language data for standard model development is due to the complex nature of the modality. In this research, a model pipeline was developed to utilize an unsupervised approach to train an encoder-language model, a recurrent network, to generate document encodings; which then can be used as features passed into a decoder-classifier model that requires magnitudes less labeled data than previous approaches to differentiate between fine-grained disease classes accurately. The language model was trained on unlabeled radiology reports from the Massachusetts General Hospital Radiology Department (n=218,159) and terminated with a loss of 1.62. The classification models were trained on three labeled datasets of head CT studies of reported patients, presenting large vessel occlusion (n=1403), acute ischemic strokes (n=331), and intracranial hemorrhage (n=4350), to identify a variety of different findings directly from the radiology report data; resulting in AUCs of 0.98, 0.95, and 0.99, respectively, for the large vessel occlusion, acute ischemic stroke, and intracranial hemorrhage datasets. The output encodings are able to be used in conjunction with imaging data, to create models that can process a multitude of different modalities. The ability to automatically extract relevant features from textual data allows for faster model development and integration of textual modality, overall, allowing clinical reports to become a more viable input for more encompassing and accurate deep learning models.

0+
0+
下载
预览

We present an algorithm, HOMER, for exploration and reinforcement learning in rich observation environments that are summarizable by an unknown latent state space. The algorithm interleaves representation learning to identify a new notion of kinematic state abstraction with strategic exploration to reach new states using the learned abstraction. The algorithm provably explores the environment with sample complexity scaling polynomially in the number of latent states and the time horizon, and, crucially, with no dependence on the size of the observation space, which could be infinitely large. This exploration guarantee further enables sample-efficient global policy optimization for any reward function. On the computational side, we show that the algorithm can be implemented efficiently whenever certain supervised learning problems are tractable. Empirically, we evaluate HOMER on a challenging exploration problem, where we show that the algorithm is exponentially more sample efficient than standard reinforcement learning baselines.

0+
0+
下载
预览

Event detection (ED), a sub-task of event extraction, involves identifying triggers and categorizing event mentions. Existing methods primarily rely upon supervised learning and require large-scale labeled event datasets which are unfortunately not readily available in many real-life applications. In this paper, we consider and reformulate the ED task with limited labeled data as a Few-Shot Learning problem. We propose a Dynamic-Memory-Based Prototypical Network (DMB-PN), which exploits Dynamic Memory Network (DMN) to not only learn better prototypes for event types, but also produce more robust sentence encodings for event mentions. Differing from vanilla prototypical networks simply computing event prototypes by averaging, which only consume event mentions once, our model is more robust and is capable of distilling contextual information from event mentions for multiple times due to the multi-hop mechanism of DMNs. The experiments show that DMB-PN not only deals with sample scarcity better than a series of baseline models but also performs more robustly when the variety of event types is relatively large and the instance quantity is extremely small.

0+
0+
下载
预览

The Statistical Learning Theory (SLT) provides the theoretical background to ensure that a supervised algorithm generalizes the mapping $f: \mathcal{X} \to \mathcal{Y}$ given $f$ is selected from its search space bias $\mathcal{F}$. This formal result depends on the Shattering coefficient function $\mathcal{N}(\mathcal{F},2n)$ to upper bound the empirical risk minimization principle, from which one can estimate the necessary training sample size to ensure the probabilistic learning convergence and, most importantly, the characterization of the capacity of $\mathcal{F}$, including its under and overfitting abilities while addressing specific target problems. In this context, we propose a new approach to estimate the maximal number of hyperplanes required to shatter a given sample, i.e., to separate every pair of points from one another, based on the recent contributions by Har-Peled and Jones in the dataset partitioning scenario, and use such foundation to analytically compute the Shattering coefficient function for both binary and multi-class problems. As main contributions, one can use our approach to study the complexity of the search space bias $\mathcal{F}$, estimate training sample sizes, and parametrize the number of hyperplanes a learning algorithm needs to address some supervised task, what is specially appealing to deep neural networks. Experiments were performed to illustrate the advantages of our approach while studying the search space $\mathcal{F}$ on synthetic and one toy datasets and on two widely-used deep learning benchmarks (MNIST and CIFAR-10). In order to permit reproducibility and the use of our approach, our source code is made available at~\url{https://bitbucket.org/rodrigo_mello/shattering-rcode}.

0+
0+
下载
预览

The supervised learning paradigm is limited by the cost - and sometimes the impracticality - of data collection and labeling in multiple domains. Self-supervised learning, a paradigm which exploits the structure of unlabeled data to create learning problems that can be solved with standard supervised approaches, has shown great promise as a pretraining or feature learning approach in fields like computer vision and time series processing. In this work, we present self-supervision strategies that can be used to learn informative representations from multivariate time series. One successful approach relies on predicting whether time windows are sampled from the same temporal context or not. As demonstrated on a clinically relevant task (sleep scoring) and with two electroencephalography datasets, our approach outperforms a purely supervised approach in low data regimes, while capturing important physiological information without any access to labels.

0+
0+
下载
预览
Top