> The Metal framework supports GPU-accelerated advanced 3D graphics rendering and data-parallel computation workloads. Metal provides a modern and streamlined API for fine-grain, low-level control of the organization, processing, and submission of graphics and computation commands and the management of the associated data and resources for these commands. A primary goal of Metal is to minimize the CPU overhead necessary for executing these GPU workloads.

Metal Programming Guide: About Metal and this Guide


Less than 35% of recyclable waste is being actually recycled in the US, which leads to increased soil and sea pollution and is one of the major concerns of environmental researchers as well as the common public. At the heart of the problem are the inefficiencies of the waste sorting process (separating paper, plastic, metal, glass, etc.) due to the extremely complex and cluttered nature of the waste stream. Recyclable waste detection poses a unique computer vision challenge as it requires detection of highly deformable and often translucent objects in cluttered scenes without the kind of context information usually present in human-centric datasets. This challenging computer vision task currently lacks suitable datasets or methods in the available literature. In this paper, we take a step towards computer-aided waste detection and present the first in-the-wild industrial-grade waste detection and segmentation dataset, ZeroWaste. We believe that ZeroWaste will catalyze research in object detection and semantic segmentation in extreme clutter as well as applications in the recycling domain. Our project page can be found at http://ai.bu.edu/zerowaste/.