知识荟萃

聊天机器人 (Chatbot) 专知荟萃

入门学习

  1. 对话系统的历史(聊天机器人发展)
  2. 微软邓力:对话系统的分类与发展历程
  3. Deep Learning for Chatbots, Part 1 – Introduction 聊天机器人中的深度学习技术之一:导读
  4. Deep Learning for Chatbots, Part 2 – Implementing a Retrieval-Based Model in Tensorflow 聊天机器人中的深度学习技术之二:基于检索模型的实现
  5. 自己动手做聊天机器人教程(1-42)
  6. 如何让人工智能助理杜绝“智障” 微软亚洲研究院
  7. 周明:自然语言对话引擎 微软亚洲研究院
  8. 谢幸:用户画像、性格分析与聊天机器人
  9. 25 Chatbot Platforms: A Comparative Table
  10. 聊天机器人开发指南 IBM
  11. 朱小燕:对话系统中的NLP
  12. 使用深度学习打造智能聊天机器人 张俊林
  13. 九款工具帮您打造属于自己的聊天机器人
  14. 聊天机器人中对话模板的高效匹配方法
  15. 中国计算机学会通讯 2017年第9期 人机对话专刊
  • 人机对话 by 刘 挺 张伟男
  • 任务型与问答型对话系统中的语言理解技术 by 车万翔 张 宇
  • 聊天机器人的技术及展望 by 武 威 周 明
  • 人机对话中的情绪感知与表达 by 黄民烈 朱小燕
  • 对话式交互与个性化推荐 by 胡云华
  • 对话智能与认知型口语交互界面 by 俞 凯
  • 对话系统评价技术进展及展望 by 张伟男 车万翔
  • [https://pan.baidu.com/s/1o8Lv138]
  1. 中国人工智能学会通讯
    • 从图灵测试到智能信息获取 郝 宇,朱小燕,黄民烈
    • 智能问答技术 何世柱,张元哲,刘 康,赵 军
    • 社区问答系统及相关技术 王 斌,吉宗诚
    • 聊天机器人技术的研究进展 张伟男,刘 挺
    • 如何评价智能问答系统 黄萱菁
    • 智能助手: 走出科幻,步入现实 赵世奇,吴华
    • [http://caai.cn/index.php?s=/Home/Article/qikandetail/year/2016/month/01.html]

综述

  1. The Dialog State Tracking Challenge Series: A Review
  2. A Survey of Available Corpora for Building Data-Driven Dialogue Systems
  3. 任务型人机对话系统中的认知技术——— 概念、进展及其未来

进阶论文

  1. Sequence to Sequence Learning with Neural Networks
  2. A Neural Conversational Model Oriol Vinyals, Quoc Le
  3. A Diversity-Promoting Objective Function for Neural Conversation Models
  4. A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues
  5. Sequence to Backward and Forward Sequences: A Content-Introducing Approach to Generative Short-Text Conversation
  6.  A Persona-Based Neural Conversation Model
  7. Deep Reinforcement Learning for Dialogue Generation
  8.  End-to-end LSTM-based dialog control optimized with supervised and reinforcement learning
  9. A Network-based End-to-End Trainable Task-oriented Dialogue System
  10.  Incorporating Unstructured Textual Knowledge Sources into Neural Dialogue Systems
  11. A Neural Network Approach to Context-Sensitive Generation of Conversational Responses
  12. A Dataset for Research on Short-Text Conversation
  13. The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems
  14. Joint Online Spoken Language Understanding and Language Modeling with Recurrent Neural Networks, 2016
  15. Neural Utterance Ranking Model for Conversational Dialogue Systems, 2016
  16. A Context-aware Natural Language Generator for Dialogue Systems, 2016
  17. Task Lineages: Dialog State Tracking for Flexible Interaction, 2016
  18. Affective Neural Response Generation
  19. Multi-Task Learning for Speaker-Role Adaptation in Neural Conversation Models
  20. Chatbot Evaluation and Database Expansion via Crowdsourcing
  21. A Neural Network Approach for Knowledge-Driven Response Generation
  22. Training End-to-End Dialogue Systems with the Ubuntu Dialogue Corpus
  23. Emotional Chatting Machine: Emotional Conversation Generation with Internal and External Memory ACL 2017
  24. Flexible End-to-End Dialogue System for Knowledge Grounded Conversation
  25. Augmenting End-to-End Dialog Systems with Commonsense Knowledge
  26. Evaluating Prerequisite Qualities for Learning End-to-End Dialog Systems
  27. Attention with Intention for a Neural Network Conversation Model
  28. Response Selection with Topic Clues for Retrieval-based Chatbots
  29. LSTM based Conversation Models
  30. Not All Dialogues are Created Equal: Instance Weighting for Neural Conversational Models
  31. Learning Discourse-level Diversity for Neural Dialog Models using Conditional Variational Autoencoders ACL 2017
  1. Words Or Characters? Fine-Grained Gating For Reading Comprehension ACL 2017

专门会议

  1. SIGDIAL ACL所属的关于对话系统的兴趣小组
  2. INTERSPEECH 2017: INTERSPEECH 2017 which will take place on August 21-24 in Stockholm, Sweden, after SIGDIAL
  3. YRRSDS 2017: Young Researchers’ Roundtable on Spoken Dialog Systems, which will take place on August 13-14 also in Saarbrücken, Germany, right before SIGDIAL.
  4. SemDial 2017!
  5. Dialog System Technology Challenge (DSTC)

Tutorial

  1. 2017 Tutorial - Deep Learning for Dialogue Systems ACL 2017
  2. Research Blog: Computer, respond to this email.
  3. Deep Learning for Chatbots, Part 1 – Introduction
  4. Deep Learning for Chatbots, Part 2 – Implementing a Retrieval-Based Model in Tensorflow
  5. Chatbot Fundamentals An interactive guide to writing bots in Python
  6. Chatbot Tutorial

软件

Chatbot

  1. ParlAI A framework for training and evaluating AI models on a variety of openly available dialog datasets.
  2. stanford-tensorflow-tutorials A neural chatbot using sequence to sequence model with attentional decoder.
  3. ChatterBot ChatterBot is a machine learning, conversational dialog engine for creating chat bots
  4. DeepQA My tensorflow implementation of "A neural conversational model", a Deep learning based chatbot
  5. neuralconvo Neural conversational model in Torch
  6. chatbot-rnn A toy chatbot powered by deep learning and trained on data from Reddit
  7. tf_seq2seq_chatbot tensorflow seq2seq chatbot
  8. ai-chatbot-framework A python chatbot framework with Natural Language Understanding and Artificial Intelligence.
  9. DeepChatModels Conversation Models in Tensorflow
  10. Chatbot Build your own chatbot base on IBM Watson
  11. Chatbot An AI Based Chatbot
  12. neural-chatbot A chatbot based on seq2seq architecture done with tensorflow.

Chinese_Chatbot

  1. Seq2Seq_Chatbot_QA 使用TensorFlow实现的Sequence to Sequence的聊天机器人模型
  2. Chatbot 基於向量匹配的情境式聊天機器人
  3. chatbot-zh-torch7 中文Neural conversational model in Torch

数据集

  1. Cornell Movie-Dialogs Corpus
  2. Dialog_Corpus Datasets for Training Chatbot System
  3. OpenSubtitles A series of scripts to download and parse the OpenSubtitles corpus.
  4. insuranceqa-corpus-zh OpenData in insurance area for Machine Learning Tasks
  5. dgk_lost_conv dgk_lost_conv 中文对白语料 chinese conversation corpus
  6. Frames: A Corpus for Adding Memory to Goal-Oriented Dialogue Systems 一共 1369 段对话,平均每段对话 15 轮。
  7. Ubuntu Dialogue Corpus

领域专家

  1. Cambridge Dialogue Systems Group Steve Young
  2. Ming Zhou
  3. Jiwei Li(李纪为), - [http://web.stanford.edu/jiweil/]
  4. Ryan Lowe, - [http://cs.mcgill.ca/rlowe1/]
  5. Lili Mou
  6. Jason Williams Microsoft
  7. Bing Liu (刘冰) CMU
  8. Ian Lane
  9. Ondřej Dušek
  10. Sungjin Lee 微软
  11. Zhou Yu   俞舟 CMU
  12. 华为诺亚实验室
  13. 刘挺 哈尔滨工业大学
  14. 张伟男 哈尔滨工业大学  - [http://ir.hit.edu.cn/~wnzhang]
  15. Wei Wu (武威) 微软
  1. 赵军 中科院自动化所
  2. 黄民烈 清华

初步版本,水平有限,有错误或者不完善的地方,欢迎大家提建议和补充,会一直保持更新,本文为专知内容组原创内容,未经允许不得转载,如需转载请发送邮件至fangquanyi@gmail.com 或 联系微信专知小助手(Rancho_Fang)

敬请关注http://www.zhuanzhi.ai 和关注专知公众号,获取第一手AI相关知识

VIP内容

介绍

这本书在保持非常务实的教导和结果导向付出很大的精力。构建聊天机器人不只是完成一个教程或遵循几个步骤,它本身就是一种技能。这本书肯定不会用大量的文本和过程让你感到无聊;相反,它采用的是边做边学的方法。到目前为止,在你的生活中,你肯定至少使用过一个聊天机器人。无论你是不是一个程序员,一旦你浏览这本书,你会发现构建模块的聊天机器人,所有的奥秘将被揭开。建立聊天机器人可能看起来很困难,但这本书将让你使它如此容易。我们的大脑不是用来直接处理复杂概念的;相反,我们一步一步地学习。当你读这本书的时候,从第一章到最后一章,你会发现事情的进展是多么的清晰。虽然你可以直接翻到任何一章,但我强烈建议你从第一章开始,因为它肯定会支持你的想法。这本书就像一个网络系列,你在读完一章之后就无法抗拒下一章的诱惑。在阅读完这本书后,你所接触到的任何聊天机器人都会在你的脑海中形成一幅关于聊天机器人内部是如何设计和构建的画面。

这本书适合谁?

这本书将作为学习与聊天机器人相关的概念和学习如何建立他们的一个完整的资源。那些将会发现这本书有用的包括: Python web开发人员希望扩大他们的知识或职业到聊天机器人开发。 学生和有抱负的程序员想获得一种新的技能通过亲身体验展示的东西,自然语言爱好者希望从头开始学习。 企业家如何构建一个聊天机器人的伟大的想法,但没有足够的技术关于如何制作聊天机器人的可行性信息。 产品/工程经理计划与聊天机器人相关项目。

如何使用这本书?

请记住,这本书的写作风格和其他书不一样。读这本书的时候要记住,一旦你完成了这本书,你就可以自己建造一个聊天机器人,或者教会别人如何建造一个聊天机器人。在像阅读其他书籍一样阅读这本书之前,务必记住以下几点:

  • 这本书涵盖了构建聊天机器人所需的几乎所有内容,而不是现有内容。
  • 这本书是关于花更多的时间在你的系统上做事情的,这本书就在你身边。确保您执行每个代码片段并尝试编写代码;不要复制粘贴。
  • 一定要按照书中的步骤去做;如果你不理解一些事情,不要担心。你将在本章的后面部分了解到。
  • 可以使用本书所提供的源代码及Jupyter NoteBook作为参考。

内容概要

  • Chapter 1: 在本章中,你将从商业和开发人员的角度了解与聊天机器人相关的事情。这一章为我们熟悉chatbots概念并将其转换为代码奠定了基础。希望在本章结束时,你会明白为什么你一定要为自己或你的公司创建一个聊天机器人。
  • Chapter 2: 在本章中会涉及聊天机器人的自然语言处理,你将学习到聊天机器人需要NLP时应该使用哪些工具和方法。这一章不仅教你在NLP的方法,而且还采取实际的例子和演示与编码的例子。本章还讨论了为什么使用特定的NLP方法可能需要在聊天机器人。注意,NLP本身就是一种技能。
  • Chapter 3: 在本章中,你将学习如何使用像Dialogflow这样的工具以一种友好而简单的方式构建聊天机器人。如果你不是程序员,你肯定会喜欢它,因为它几乎不需要编程技能。
  • Chapter 4:在本章中,你将学习如何以人们想要的方式构建聊天机器人。标题说的很艰难,但一旦你完成了前一章,你会想要更多,因为这一章将教如何建立内部聊天机器人从零开始,以及如何使用机器学习算法训练聊天机器人。
  • Chapter 5:在本章中,部署你的聊天机器人纯粹是设计给你的聊天机器人应用一个最后的推动。当你经历了创建聊天机器人的简单和艰难的过程后,你肯定不想把它留给自己。你将学习如何展示你的聊天机器人到世界使用Facebook和Slack,最后,整合他们在你自己的网站。
成为VIP会员查看完整内容
Building Chatbots with Python.pdf
0
53
Top