网络中的链路预测(Link Prediction)是指如何通过已知的网络节点以及网络结构等信息预测网络中尚未产生连边的两个节点之间产生链接的可能性。这种预测既包含了对未知链接(exist yet unknown links)的预测也包含了对未来链接(future links)的预测。该问题的研究在理论和应用两个方面都具有重要的意义和价值 。

VIP内容

论文题目: MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding

摘要: 大量真实世界的图或网络本质上是异构的,涉及节点类型和关系类型的多样性。异构图嵌入是将异构图的丰富结构和语义信息嵌入到低维节点表示中。现有的模型通常在异构图中定义多个元数据来捕获复合关系并指导邻居选择。但是,这些模型要么忽略节点内容特性,要么沿着元路径丢弃中间节点,要么只考虑一个元路径。为了解决这三个局限性,我们提出了一种新的集合图神经网络模型来提高最终性能。具体来说,MAGNN使用了三个主要组件,即,节点内容转换封装输入节点属性,元内聚合合并中间语义节点,元间聚合合并来自多个元的消息。在三个真实世界的异构图数据集上进行了大量的节点分类、节点聚类和链路预测实验,结果表明MAGNN的预测结果比最先进的基线更准确。

成为VIP会员查看完整内容
0
101

最新内容

Modeling user preference from his historical sequences is one of the core problems of sequential recommendation. Existing methods in this field are widely distributed from conventional methods to deep learning methods. However, most of them only model users' interests within their own sequences and ignore the dynamic collaborative signals among different user sequences, making it insufficient to explore users' preferences. We take inspiration from dynamic graph neural networks to cope with this challenge, modeling the user sequence and dynamic collaborative signals into one framework. We propose a new method named Dynamic Graph Neural Network for Sequential Recommendation (DGSR), which connects different user sequences through a dynamic graph structure, exploring the interactive behavior of users and items with time and order information. Furthermore, we design a Dynamic Graph Recommendation Network to extract user's preferences from the dynamic graph. Consequently, the next-item prediction task in sequential recommendation is converted into a link prediction between the user node and the item node in a dynamic graph. Extensive experiments on three public benchmarks show that DGSR outperforms several state-of-the-art methods. Further studies demonstrate the rationality and effectiveness of modeling user sequences through a dynamic graph.

0
0
下载
预览

最新论文

Modeling user preference from his historical sequences is one of the core problems of sequential recommendation. Existing methods in this field are widely distributed from conventional methods to deep learning methods. However, most of them only model users' interests within their own sequences and ignore the dynamic collaborative signals among different user sequences, making it insufficient to explore users' preferences. We take inspiration from dynamic graph neural networks to cope with this challenge, modeling the user sequence and dynamic collaborative signals into one framework. We propose a new method named Dynamic Graph Neural Network for Sequential Recommendation (DGSR), which connects different user sequences through a dynamic graph structure, exploring the interactive behavior of users and items with time and order information. Furthermore, we design a Dynamic Graph Recommendation Network to extract user's preferences from the dynamic graph. Consequently, the next-item prediction task in sequential recommendation is converted into a link prediction between the user node and the item node in a dynamic graph. Extensive experiments on three public benchmarks show that DGSR outperforms several state-of-the-art methods. Further studies demonstrate the rationality and effectiveness of modeling user sequences through a dynamic graph.

0
0
下载
预览
Top