Google发布的第二代深度学习系统TensorFlow

VIP内容

内容介绍:

计算机科学正在发展,以利用新的硬件,如GPU、TPUs、CPU和大型的集群。许多子领域,如机器学习和优化,已经调整了它们的算法来处理这样的集群。

主题包括分布式和并行算法:优化、数值线性代数、机器学习、图形分析、流形算法,以及其他在集群中难以扩展的问题。该类将重点分析程序,并使用Apache Spark和TensorFlow实现一些程序。

本课程将分为两部分:首先,介绍并行算法的基础知识和在单多核机器上的运行时分析。其次,我们将介绍在集群机器上运行的分布式算法。

成为VIP会员查看完整内容
0
34

最新论文

The success and popularity of deep learning is on the rise, partially due to powerful deep learning frameworks such as TensorFlow and PyTorch that make it easier to develop deep learning models. However, these libraries also come with steep learning curves, since programming in these frameworks is quite different from traditional imperative programming with explicit loops and conditionals. In this work, we present a tool called TF-Coder for programming by example in TensorFlow. TF-Coder uses a bottom-up weighted enumerative search, with value-based pruning of equivalent expressions and flexible type- and value-based filtering to ensure that expressions adhere to various requirements imposed by the TensorFlow library. We also train models that predict TensorFlow operations from features of the input and output tensors and natural language descriptions of tasks, and use the models to prioritize relevant operations during the search. TF-Coder solves 63 of 70 real-world tasks within 5 minutes, often achieving superhuman performance -- finding solutions that are simpler than those written by TensorFlow experts, in less time as well.

0
0
下载
预览
Top