Google发布的第二代深度学习系统TensorFlow

VIP内容

在Jupyter Notebook环境中使用Python和TensorFlow 2.0创建、执行、修改和共享机器学习应用程序。这本书打破了编程机器学习应用程序的任何障碍,通过使用Jupyter Notebook而不是文本编辑器或常规IDE。

您将从学习如何使用Jupyter笔记本来改进使用Python编程的方式开始。在获得一个良好的基础与Python工作在木星的笔记本,你将深入什么是TensorFlow,它如何帮助机器学习爱好者,以及如何解决它提出的挑战。在此过程中,使用Jupyter笔记本创建的示例程序允许您应用本书前面的概念。

那些刚接触机器学习的人可以通过这些简单的程序来学习基本技能。本书末尾的术语表提供了常见的机器学习和Python关键字和定义,使学习更加容易。

你将学到什么

程序在Python和TensorFlow 解决机器学习的基本障碍 在Jupyter Notebook环境中发展

这本书是给谁的

理想的机器学习和深度学习爱好者谁对Python编程感兴趣使用Tensorflow 2.0在Jupyter 笔记本应用程序。了解一些机器学习概念和Python编程(使用Python version 3)的基本知识会很有帮助。

http://file.allitebooks.com/20200923/Machine%20Learning%20Concepts%20with%20Python%20and%20the%20Jupyter%20Notebook%20Environment.pdf

成为VIP会员查看完整内容
0
50

最新论文

Artificial Intelligence agents are required to learn from their surroundings and to reason about the knowledge that has been learned in order to make decisions. While state-of-the-art learning from data typically uses sub-symbolic distributed representations, reasoning is normally useful at a higher level of abstraction with the use of a first-order logic language for knowledge representation. As a result, attempts at combining symbolic AI and neural computation into neural-symbolic systems have been on the increase. In this paper, we present Logic Tensor Networks (LTN), a neurosymbolic formalism and computational model that supports learning and reasoning through the introduction of a many-valued, end-to-end differentiable first-order logic called Real Logic as a representation language for deep learning. We show that LTN provides a uniform language for the specification and the computation of several AI tasks such as data clustering, multi-label classification, relational learning, query answering, semi-supervised learning, regression and embedding learning. We implement and illustrate each of the above tasks with a number of simple explanatory examples using TensorFlow 2. Keywords: Neurosymbolic AI, Deep Learning and Reasoning, Many-valued Logic.

0
0
下载
预览
Top