让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8

热门内容

Meta-learning, or learning to learn, is the science of systematically observing how different machine learning approaches perform on a wide range of learning tasks, and then learning from this experience, or meta-data, to learn new tasks much faster than otherwise possible. Not only does this dramatically speed up and improve the design of machine learning pipelines or neural architectures, it also allows us to replace hand-engineered algorithms with novel approaches learned in a data-driven way. In this chapter, we provide an overview of the state of the art in this fascinating and continuously evolving field.

0
113
下载
预览

最新内容

Data augmentation is becoming essential for improving regression accuracy in critical applications including manufacturing and finance. Existing techniques for data augmentation largely focus on classification tasks and do not readily apply to regression tasks. In particular, the recent Mixup techniques for classification rely on the key assumption that linearity holds among training examples, which is reasonable if the label space is discrete, but has limitations when the label space is continuous as in regression. We show that mixing examples that either have a large data or label distance may have an increasingly-negative effect on model performance. Hence, we use the stricter assumption that linearity only holds within certain data or label distances for regression where the degree may vary by each example. We then propose MixRL, a data augmentation meta learning framework for regression that learns for each example how many nearest neighbors it should be mixed with for the best model performance using a small validation set. MixRL achieves these objectives using Monte Carlo policy gradient reinforcement learning. Our experiments conducted both on synthetic and real datasets show that MixRL significantly outperforms state-of-the-art data augmentation baselines. MixRL can also be integrated with other classification Mixup techniques for better results.

0
0
下载
预览

最新论文

Data augmentation is becoming essential for improving regression accuracy in critical applications including manufacturing and finance. Existing techniques for data augmentation largely focus on classification tasks and do not readily apply to regression tasks. In particular, the recent Mixup techniques for classification rely on the key assumption that linearity holds among training examples, which is reasonable if the label space is discrete, but has limitations when the label space is continuous as in regression. We show that mixing examples that either have a large data or label distance may have an increasingly-negative effect on model performance. Hence, we use the stricter assumption that linearity only holds within certain data or label distances for regression where the degree may vary by each example. We then propose MixRL, a data augmentation meta learning framework for regression that learns for each example how many nearest neighbors it should be mixed with for the best model performance using a small validation set. MixRL achieves these objectives using Monte Carlo policy gradient reinforcement learning. Our experiments conducted both on synthetic and real datasets show that MixRL significantly outperforms state-of-the-art data augmentation baselines. MixRL can also be integrated with other classification Mixup techniques for better results.

0
0
下载
预览
Top