进化计算(Evolutionary Computation)是该领域的前沿期刊。它为促进和加强信息交换的研究人员参与理论和实践两方面计算系统提供了一个国际论坛,特别强调进化计算模型如遗传算法、进化策略、分类系统、进化编程和遗传编程。它欢迎来自相关领域的文章,如群体智能(如蚁群优化和粒子群优化),以及其他受自然启发的计算范例(如人工免疫系统)。除了发表描述理论或实验工作的文章外,还欢迎以应用为重点的论文,这些论文描述了在一个应用领域取得的突破性成果,或在现实世界问题的特殊性导致重大算法改进的方法学论文,这些改进可能推广到其他领域。 官网地址:http://dblp.uni-trier.de/db/journals/ec/

Biological evolution provides a creative fount of complex and subtle adaptations, often surprising the scientists who discover them. However, because evolution is an algorithmic process that transcends the substrate in which it occurs, evolution's creativity is not limited to nature. Indeed, many researchers in the field of digital evolution have observed their evolving algorithms and organisms subverting their intentions, exposing unrecognized bugs in their code, producing unexpected adaptations, or exhibiting outcomes uncannily convergent with ones in nature. Such stories routinely reveal creativity by evolution in these digital worlds, but they rarely fit into the standard scientific narrative. Instead they are often treated as mere obstacles to be overcome, rather than results that warrant study in their own right. The stories themselves are traded among researchers through oral tradition, but that mode of information transmission is inefficient and prone to error and outright loss. Moreover, the fact that these stories tend to be shared only among practitioners means that many natural scientists do not realize how interesting and lifelike digital organisms are and how natural their evolution can be. To our knowledge, no collection of such anecdotes has been published before. This paper is the crowd-sourced product of researchers in the fields of artificial life and evolutionary computation who have provided first-hand accounts of such cases. It thus serves as a written, fact-checked collection of scientifically important and even entertaining stories. In doing so we also present here substantial evidence that the existence and importance of evolutionary surprises extends beyond the natural world, and may indeed be a universal property of all complex evolving systems.

0+
0+
下载
预览

In management, business, economics, science, engineering, and research domains, Large Scale Global Optimization (LSGO) plays a predominant and vital role. Though LSGO is applied in many of the application domains, it is a very troublesome and a perverse task. The Congress on Evolutionary Computation (CEC) began an LSGO competition to come up with algorithms with a bunch of standard benchmark unconstrained LSGO functions. Therefore, in this paper, we propose a hybrid meta-heuristic algorithm, which combines an Improved and Modified Harmony Search (IMHS), along with a Modified Differential Evolution (MDE) with an alternate selection strategy. Harmony Search (HS) does the job of exploration and exploitation, and Differential Evolution does the job of giving a perturbation to the exploration of IMHS, as harmony search suffers from being stuck at the basin of local optimal. To judge the performance of the suggested algorithm, we compare the proposed algorithm with ten excellent meta-heuristic algorithms on fifteen LSGO benchmark functions, which have 1000 continuous decision variables, of the CEC 2013 LSGO special session. The experimental results consistently show that our proposed hybrid meta-heuristic performs statistically on par with some algorithms in a few problems, while it turned out to be the best in a couple of problems.

0+
0+
下载
预览

For many linear and nonlinear systems that arise from the discretization of partial differential equations the construction of an efficient multigrid solver is a challenging task. Here we present a novel approach for the optimization of geometric multigrid methods that is based on evolutionary computation, a generic program optimization technique inspired by the principle of natural evolution. A multigrid solver is represented as a tree of mathematical expressions which we generate based on a tailored grammar. The quality of each solver is evaluated in terms of convergence and compute performance using automated local Fourier analysis (LFA) and roofline performance modeling, respectively. Based on these objectives a multi-objective optimization is performed using strongly typed genetic programming with a non-dominated sorting based selection. To evaluate the model-based prediction and to target concrete applications, scalable implementations of an evolved solver can be automatically generated with the ExaStencils framework. We demonstrate our approach by constructing multigrid solvers for the steady-state heat equation with constant and variable coefficients that consistently perform better than common V- and W-cycles.

0+
0+
下载
预览

For many linear and nonlinear systems that arise from the discretization of partial differential equations the construction of an efficient multigrid solver is a challenging task. Here we present a novel approach for the optimization of geometric multigrid methods that is based on evolutionary computation, a generic program optimization technique inspired by the principle of natural evolution. A multigrid solver is represented as a tree of mathematical expressions which we generate based on a tailored grammar. The quality of each solver is evaluated in terms of convergence and compute performance using automated local Fourier analysis (LFA) and roofline performance modeling, respectively. Based on these objectives a multi-objective optimization is performed using strongly typed genetic programming with a non-dominated sorting based selection. To evaluate the model-based prediction and to target concrete applications, scalable implementations of an evolved solver can be automatically generated with the ExaStencils framework. We demonstrate our approach by constructing multigrid solvers for the steady-state heat equation with constant and variable coefficients that consistently perform better than common V- and W-cycles.

0+
0+
下载
预览

Recent developments in artificial intelligence and machine learning have spurred interest in the growing field of AI safety, which studies how to prevent human-harming accidents when deploying AI systems. This paper thus explores the intersection of AI safety with evolutionary computation, to show how safety issues arise in evolutionary computation and how understanding from evolutionary computational and biological evolution can inform the broader study of AI safety.

0+
0+
下载
预览

Multi-task learning uses auxiliary data or knowledge from relevant tasks to facilitate the learning in a new task. Multi-task optimization applies multi-task learning to optimization to study how to effectively and efficiently tackle multiple optimization problems simultaneously. Evolutionary multi-tasking, or multi-factorial optimization, is an emerging subfield of multi-task optimization, which integrates evolutionary computation and multi-task learning. This paper proposes a novel and easy-to-implement multi-tasking genetic algorithm (MTGA), which copes well with significantly different optimization tasks by estimating and using the bias among them. Comparative studies with eight state-of-the-art single- and multi-task approaches in the literature on nine benchmarks demonstrated that on average the MTGA outperformed all of them, and had lower computational cost than six of them. Based on the MTGA, a simultaneous optimization strategy for fuzzy system design is also proposed. Experiments on simultaneous optimization of type-1 and interval type-2 fuzzy logic controllers for couple-tank water level control demonstrated that the MTGA can find better fuzzy logic controllers than other approaches.

0+
0+
下载
预览

This paper presents a swarm teaming perspective that enhances the scope of classic investigations on survivable networks. A target searching generic context is considered as test-bed, in which a swarm of ground agents and a swarm of UAVs cooperate so that the ground agents reach as many targets as possible in the field while also remaining connected as much as possible at all times. To optimise the system against both these objectives in the same time, we use an evolutionary computation approach in the form of a differential evolution algorithm. Results are encouraging, showing a good evolution of the fitness function used as part of the differential evolution, and a good performance of the evolved dual-swarm system, which exhibits an optimal trade-off between target reaching and connectivity.

0+
0+
下载
预览

This study suggests a new approach to EEG data classification by exploring the idea of using evolutionary computation to both select useful discriminative EEG features and optimise the topology of Artificial Neural Networks. An evolutionary algorithm is applied to select the most informative features from an initial set of 2550 EEG statistical features. Optimisation of a Multilayer Perceptron (MLP) is performed with an evolutionary approach before classification to estimate the best hyperparameters of the network. Deep learning and tuning with Long Short-Term Memory (LSTM) are also explored, and Adaptive Boosting of the two types of models is tested for each problem. Three experiments are provided for comparison using different classifiers: one for attention state classification, one for emotional sentiment classification, and a third experiment in which the goal is to guess the number a subject is thinking of. The obtained results show that an Adaptive Boosted LSTM can achieve an accuracy of 84.44%, 97.06%, and 9.94% on the attentional, emotional, and number datasets, respectively. An evolutionary-optimised MLP achieves results close to the Adaptive Boosted LSTM for the two first experiments and significantly higher for the number-guessing experiment with an Adaptive Boosted DEvo MLP reaching 31.35%, while being significantly quicker to train and classify. In particular, the accuracy of the nonboosted DEvo MLP was of 79.81%, 96.11%, and 27.07% in the same benchmarks. Two datasets for the experiments were gathered using a Muse EEG headband with four electrodes corresponding to TP9, AF7, AF8, and TP10 locations of the international EEG placement standard. The EEG MindBigData digits dataset was gathered from the TP9, FP1, FP2, and TP10 locations.

0+
0+
下载
预览

This volume contains the Late-Breaking Abstracts submitted to the EVO* 2019 Conference, that took place in Leipzig, from 24 to 26 of April. These papers where presented as short talks and also at the poster session of the conference together with other regular submissions. All of them present ongoing research and preliminary results investigating on the application of different approaches of Evolutionary Computation to different problems, most of them real world ones.

0+
0+
下载
预览

Deep Convolutional Neural Networks (CNNs) have been widely used in image classification tasks, but the process of designing CNN architectures is very complex, so Neural Architecture Search (NAS), automatically searching for optimal CNN architectures, has attracted more and more research interests. However, the computational cost of NAS is often too high to apply NAS on real-life applications. In this paper, an efficient particle swarm optimisation method named EPSOCNN is proposed to evolve CNN architectures inspired by the idea of transfer learning. EPSOCNN successfully reduces the computation cost by minimising the search space to a single block and utilising a small subset of the training set to evaluate CNNs during evolutionary process. Meanwhile, EPSOCNN also keeps very competitive classification accuracy by stacking the evolved block multiple times to fit the whole dataset. The proposed EPSOCNN algorithm is evaluated on CIFAR-10 dataset and compared with 13 peer competitors comprised of deep CNNs crafted by hand, learned by reinforcement learning methods and evolved by evolutionary computation approaches, which shows very promising results by outperforming all of the peer competitors with regard to the classification accuracy, number of parameters and the computational cost.

0+
0+
下载
预览

This paper deals with robust optimization applied to network flows. Two robust variants of the minimum-cost integer flow problem are considered. Thereby, uncertainty in problem formulation is limited to arc unit costs and expressed by a finite set of explicitly given scenarios. It is shown that both problem variants are NP-hard. To solve the considered variants, several heuristics based on local search or evolutionary computing are proposed. The heuristics are experimentally evaluated on appropriate problem instances.

0+
0+
下载
预览

Floating centroid method (FCM) offers an efficient way to solve a fixed-centroid problem for the neural network classifiers. However, evolutionary computation as its optimization method restrains the FCM to achieve satisfactory performance for different neural network structures, because of the high computational complexity and inefficiency. Traditional gradient-based methods have been extensively adopted to optimize the neural network classifiers. In this study, a gradient-based floating centroid (GDFC) method is introduced to address the fixed centroid problem for the neural network classifiers optimized by gradient-based methods. Furthermore, a new loss function for optimizing GDFC is introduced. The experimental results display that GDFC obtains promising classification performance than the comparison methods on the benchmark datasets.

0+
0+
下载
预览

In January 2019, DeepMind revealed AlphaStar to the world-the first artificial intelligence (AI) system to beat a professional player at the game of StarCraft II-representing a milestone in the progress of AI. AlphaStar draws on many areas of AI research, including deep learning, reinforcement learning, game theory, and evolutionary computation (EC). In this paper we analyze AlphaStar primarily through the lens of EC, presenting a new look at the system and relating it to many concepts in the field. We highlight some of its most interesting aspects-the use of Lamarckian evolution, competitive co-evolution, and quality diversity. In doing so, we hope to provide a bridge between the wider EC community and one of the most significant AI systems developed in recent times.

0+
0+
下载
预览
父主题
Top