计算统计包含求解非线性方程组的牛顿方法、传统的随机模拟方法等, 又全面地介绍了近些年来发展起来的某些新方法, 如模拟退火算法、基因算法、EM算法、MCMC方法、Bootstrap方法等。最后还提供了各种难度的习题。随着计算机的快速发展, 数理统计中许多涉及大计算量的有效方法也得到了广泛应用与迅猛发展, 可以说, 计算统计已是统计中一个很重要的研究方向。

热门内容

Data used in deep learning is notoriously problematic. For example, data are usually combined from diverse sources, rarely cleaned and vetted thoroughly, and sometimes corrupted on purpose. Intentional corruption that targets the weak spots of algorithms has been studied extensively under the label of "adversarial attacks." In contrast, the arguably much more common case of corruption that reflects the limited quality of data has been studied much less. Such "random" corruptions are due to measurement errors, unreliable sources, convenience sampling, and so forth. These kinds of corruption are common in deep learning, because data are rarely collected according to strict protocols -- in strong contrast to the formalized data collection in some parts of classical statistics. This paper concerns such corruption. We introduce an approach motivated by very recent insights into median-of-means and Le Cam's principle, we show that the approach can be readily implemented, and we demonstrate that it performs very well in practice. In conclusion, we believe that our approach is a very promising alternative to standard parameter training based on least-squares and cross-entropy loss.

0
0
下载
预览

最新内容

Generalized linear mixed models are useful in studying hierarchical data with possibly non-Gaussian responses. However, the intractability of likelihood functions poses challenges for estimation. We develop a new method suitable for this problem, called imputation maximization stochastic approximation (IMSA). For each iteration, IMSA first imputes latent variables/random effects, then maximizes over the complete data likelihood, and finally moves the estimate towards the new maximizer while preserving a proportion of the previous value. The limiting point of IMSA satisfies a self-consistency property and can be less biased in finite samples than the maximum likelihood estimator solved by score-equation based stochastic approximation (ScoreSA). Numerically, IMSA can also be advantageous over ScoreSA in achieving more stable convergence and respecting the parameter ranges under various transformations such as nonnegative variance components. This is corroborated through our simulation studies where IMSA consistently outperforms ScoreSA.

0
0
下载
预览

最新论文

Generalized linear mixed models are useful in studying hierarchical data with possibly non-Gaussian responses. However, the intractability of likelihood functions poses challenges for estimation. We develop a new method suitable for this problem, called imputation maximization stochastic approximation (IMSA). For each iteration, IMSA first imputes latent variables/random effects, then maximizes over the complete data likelihood, and finally moves the estimate towards the new maximizer while preserving a proportion of the previous value. The limiting point of IMSA satisfies a self-consistency property and can be less biased in finite samples than the maximum likelihood estimator solved by score-equation based stochastic approximation (ScoreSA). Numerically, IMSA can also be advantageous over ScoreSA in achieving more stable convergence and respecting the parameter ranges under various transformations such as nonnegative variance components. This is corroborated through our simulation studies where IMSA consistently outperforms ScoreSA.

0
0
下载
预览
参考链接
Top
微信扫码咨询专知VIP会员