数据增强在机器学习领域多指采用一些方法(比如数据蒸馏,正负样本均衡等)来提高模型数据集的质量,增强数据。

VIP内容

为了追求精度,深度学习模型框架的结构越来越复杂,网络越来越深。参数量的增加意味着训练模型需要更多的数据。然而人工标注数据的成本是高昂的,且受客观原因所限,实际应用时可能难以获得特定领域的数据,数据不足问题非常常见。数据增强通过人为地生成新的数据增加数据量来缓解这一问题。数据增强方法在计算机视觉领域大放异彩,让人们开始关注类似方法能否应用在序列数据上。除了翻转、裁剪等在时间域进行增强的方法外,也描述了在频率域实现数据增强的方法;除了人们基于经验或知识而设计的方法以外,对一系列基于GAN的通过机器学习模型自动生成数据的方法也进行了详细的论述。介绍了应用在自然语言文本、音频信号和时间序列等多种序列数据上的数据增强方法,亦有涉及它们在医疗诊断、情绪判断等问题上的表现。尽管数据类型不同,但总结了应用在这些类型上的数据增强方法背后的相似的设计思路。以这一思路为线索,梳理应用在各类序列数据类型上的多种数据增强方法,并进行了一定的讨论和展望。

http://fcst.ceaj.org/CN/abstract/abstract2790.shtml

成为VIP会员查看完整内容
0
21

最新论文

As machine learning models are increasingly employed to assist human decision-makers, it becomes critical to communicate the uncertainty associated with these model predictions. However, the majority of work on uncertainty has focused on traditional probabilistic or ranking approaches - where the model assigns low probabilities or scores to uncertain examples. While this captures what examples are challenging for the model, it does not capture the underlying source of the uncertainty. In this work, we seek to identify examples the model is uncertain about and characterize the source of said uncertainty. We explore the benefits of designing a targeted intervention - targeted data augmentation of the examples where the model is uncertain over the course of training. We investigate whether the rate of learning in the presence of additional information differs between atypical and noisy examples? Our results show that this is indeed the case, suggesting that well-designed interventions over the course of training can be an effective way to characterize and distinguish between different sources of uncertainty.

0
0
下载
预览
Top