知识抽取,即从不同来源、不同结构的数据中进行知识提取,形成知识(结构化数据)存入到知识图谱。

VIP内容

摘要: 知识图谱的概念由谷歌于2012年提出,随后逐渐成为人工智能领域的一个研究热点,已在信息搜索、自动问答、决策分析等应用中发挥作用。虽然知识图谱在各领域展现出了巨大的潜力,但不难发现目前缺乏成熟的知识图谱构建平台,需要对知识图谱的构建体系进行研究,以满足不同的行业应用需求。文中以知识图谱构建为主线,首先介绍目前主流的通用知识图谱和领域知识图谱,描述两者在构建过程中的区别;然后,分类讨论图谱构建过程中存在的问题和挑战,并针对这些问题和挑战,分类描述目前图谱构建过程中的知识抽取、知识表示、知识融合、知识推理、知识存储5个层面的解决方法和策略;最后,展望未来可能的研究方向。

http://www.jsjkx.com/CN/10.11896/jsjkx.200700010

成为VIP会员查看完整内容
0
38

最新论文

Pre-trained text encoders have drawn sustaining attention in natural language processing (NLP) and shown their capability in obtaining promising results in different tasks. Recent studies illustrated that external self-supervised signals (or knowledge extracted by unsupervised learning, such as n-grams) are beneficial to provide useful semantic evidence for understanding languages such as Chinese, so as to improve the performance on various downstream tasks accordingly. To further enhance the encoders, in this paper, we propose to pre-train n-gram-enhanced encoders with a large volume of data and advanced techniques for training. Moreover, we try to extend the encoder to different languages as well as different domains, where it is confirmed that the same architecture is applicable to these varying circumstances and new state-of-the-art performance is observed from a long list of NLP tasks across languages and domains.

0
0
下载
预览
Top