神经计算(Neural Computation)期刊传播在理论、建模、计算方面的重要的多学科的研究,在神经科学统计和建设神经启发信息处理系统。这个领域吸引了心理学家、物理学家、计算机科学家、神经科学家和人工智能研究人员,他们致力于研究感知、情感、认知和行为背后的神经系统,以及具有类似能力的人工神经系统。由BRAIN Initiative开发的强大的新实验技术将产生大量复杂的数据集,严谨的统计分析和理论洞察力对于理解这些数据的含义至关重要。及时的、简短的交流、完整的研究文章以及对该领域进展的评论,涵盖了神经计算的所有方面。 官网地址:http://dblp.uni-trier.de/db/journals/neco/

The `Internet of Things' has brought increased demand for AI-based edge computing in applications ranging from healthcare monitoring systems to autonomous vehicles. Quantization is a powerful tool to address the growing computational cost of such applications, and yields significant compression over full-precision networks. However, quantization can result in substantial loss of performance for complex image classification tasks. To address this, we propose a Principal Component Analysis (PCA) driven methodology to identify the important layers of a binary network, and design mixed-precision networks. The proposed Hybrid-Net achieves a more than 10% improvement in classification accuracy over binary networks such as XNOR-Net for ResNet and VGG architectures on CIFAR-100 and ImageNet datasets while still achieving up to 94% of the energy-efficiency of XNOR-Nets. This work furthers the feasibility of using highly compressed neural networks for energy-efficient neural computing in edge devices.

0+
0+
下载
预览

The unification of low-level perception and high-level reasoning is a long-standing problem in artificial intelligence, which has the potential to not only bring the areas of logic and learning closer together but also demonstrate how abstract concepts might emerge from sensory data. Precisely because deep learning methods dominate perception-based learning, including vision, speech, and linguistic grammar, there is fast-growing literature on how to integrate symbolic reasoning and deep learning. Broadly, efforts seem to fall into three camps: those focused on defining a logic whose formulas capture deep learning, ones that integrate symbolic constraints in deep learning, and others that allow neural computations and symbolic reasoning to co-exist separately, to enjoy the strengths of both worlds. In this paper, we identify another dimension to this inquiry: what do the hidden layers really capture, and how can we reason about that logically? In particular, we consider autoencoders that are widely used for dimensionality reduction and inject a symbolic generative framework onto the feature layer. This allows us, among other things, to generate example images for a class to get a sense of what was learned. Moreover, the modular structure of the proposed model makes it possible to learn relations over multiple images at a time, as well as handle noisy labels. Our empirical evaluations show the promise of this inquiry.

0+
0+
下载
预览

In this work, we analyze the capabilities and practical limitations of neural networks (NNs) for sequence-based signal processing which can be seen as an omnipresent property in almost any modern communication systems. In particular, we train multiple state-of-the-art recurrent neural network (RNN) structures to learn how to decode convolutional codes allowing a clear benchmarking with the corresponding maximum likelihood (ML) Viterbi decoder. We examine the decoding performance for various kinds of NN architectures, beginning with classical types like feedforward layers and gated recurrent unit (GRU)-layers, up to more recently introduced architectures such as temporal convolutional networks (TCNs) and differentiable neural computers (DNCs) with external memory. As a key limitation, it turns out that the training complexity increases exponentially with the length of the encoding memory $\nu$ and, thus, practically limits the achievable bit error rate (BER) performance. To overcome this limitation, we introduce a new training-method by gradually increasing the number of ones within the training sequences, i.e., we constrain the amount of possible training sequences in the beginning until first convergence. By consecutively adding more and more possible sequences to the training set, we finally achieve training success in cases that did not converge before via naive training. Further, we show that our network can learn to jointly detect and decode a quadrature phase shift keying (QPSK) modulated code with sub-optimal (anti-Gray) labeling in one-shot at a performance that would require iterations between demapper and decoder in classic detection schemes.

0+
0+
下载
预览

New technologies for recording the activity of large neural populations during complex behavior provide exciting opportunities for investigating the neural computations that underlie perception, cognition, and decision-making. Nonlinear state-space models provide an interpretable signal processing framework by combining an intuitive dynamical system with a probabilistic observation model, which can provide insights into neural dynamics, neural computation, and development of neural prosthetics and treatment through feedback control. It yet brings the challenge of learning both latent neural state and the underlying dynamical system because neither is known for neural systems a priori. We developed a flexible online learning framework for latent nonlinear state dynamics and filtered latent states. Using the stochastic gradient variational Bayes approach, our method jointly optimizes the parameters of the nonlinear dynamical system, the observation model, and the black-box recognition model. Unlike previous approaches, our framework can incorporate non-trivial distributions of observation noise and has constant time and space complexity. These features make our approach amenable to real-time applications and the potential to automate analysis and experimental design in ways that testably track and modify behavior using stimuli designed to influence learning.

0+
0+
下载
预览
父主题
Top