图像超分辨率(SR)是提高图像分辨率的一类重要的图像处理技术以及计算机视觉中的视频。

VIP内容

论文主题: Deep Learning for Image Super-resolution: A Survey

论文摘要: 图像超分辨率(SR)是提高图像分辨率的一类重要的图像处理技术以及计算机视觉中的视频。近年来,基于深度学习的图像超分辨率研究取得了显著进展技术。在这项调查中,我们旨在介绍利用深度学习的图像超分辨率技术的最新进展系统的方法。一般来说,我们可以粗略地将现有的SR技术研究分为三大类:监督SR、非监督SR和领域特定SR。此外,我们还讨论了一些其他重要问题,如公开可用的基准数据集和性能评估指标。最后,我们通过强调几个未来来结束这项调查未来社区应进一步解决的方向和公开问题.

成为VIP会员查看完整内容
0
25

最新论文

Deep neural networks (DNNs) based methods have achieved great success in single image super-resolution (SISR). However, existing state-of-the-art SISR techniques are designed like black boxes lacking transparency and interpretability. Moreover, the improvement in visual quality is often at the price of increased model complexity due to black-box design. In this paper, we present and advocate an explainable approach toward SISR named model-guided deep unfolding network (MoG-DUN). Targeting at breaking the coherence barrier, we opt to work with a well-established image prior named nonlocal auto-regressive model and use it to guide our DNN design. By integrating deep denoising and nonlocal regularization as trainable modules within a deep learning framework, we can unfold the iterative process of model-based SISR into a multi-stage concatenation of building blocks with three interconnected modules (denoising, nonlocal-AR, and reconstruction). The design of all three modules leverages the latest advances including dense/skip connections as well as fast nonlocal implementation. In addition to explainability, MoG-DUN is accurate (producing fewer aliasing artifacts), computationally efficient (with reduced model parameters), and versatile (capable of handling multiple degradations). The superiority of the proposed MoG-DUN method to existing state-of-the-art image SR methods including RCAN, SRMDNF, and SRFBN is substantiated by extensive experiments on several popular datasets and various degradation scenarios.

0
0
下载
预览
Top