甲骨文公司,全称甲骨文股份有限公司(甲骨文软件系统有限公司),是全球最大的企业级软件公司,总部位于美国加利福尼亚州的红木滩。1989年正式进入中国市场。2013年,甲骨文已超越 IBM ,成为继 Microsoft 后全球第二大软件公司。

VIP内容

报告主题:Taming Social Bots: Detection, Exploration and Measurement

报告摘要:社交机器人已经存在了十多年了。 社交机器人可以摇摆政治见解,散布虚假信息并招募恐怖组织。 社交机器人通过采用情感,同情跟随,同步删除和轮廓转换来使用各种复杂的技术。 文献中提出了几种检测,探索和衡量社交机器人的方法。 我们将从数据挖掘和机器学习的角度对现有工作进行全面概述,讨论各种方法的相对优势和劣势,为研究人员和从业人员提供建议,并为驯服社交机器人的未来研究提出新的方向。 本教程还将讨论在社交机器人上收集和共享数据的陷阱。

邀请嘉宾:Nikan Chavoshi于2018年6月加入Oracle,担任高级技术人员。此前,她在新墨西哥大学获得了计算机科学博士学位。 她的研究兴趣是时间序列挖掘和时间活动分析。 她的研究生工作是分析Twitter中自动帐户的时态行为,为此,她于2018年获得了CS部门的杰出研究生奖。在博士学位期间,她与Abdullah Mueen博士合作并设计了一种近实时系统,名为DeBot,以检测Twitter中的自动帐户。 Chavoshi博士在包括WWW,ICDM,SocInfo,ASONAM和KAIS在内的顶级网络采矿场所发表了研究文章。

Amanda J. Minnich是劳伦斯·利弗莫尔国家实验室(LLNL)的机器学习研究科学家和分子数据驱动的建模团队负责人。在LLNL,她是多机构ATOM联盟的成员,在那里她将机器学习技术应用于生物学数据以进行药物发现。 Minnich博士获得了加州大学伯克利分校的综合生物学学士学位(2009年),并获得了新墨西哥大学的计算机科学硕士学位(2014年)和杰出博士学位(2017年)。她的论文主题是“垃圾邮件,欺诈和僵尸程序:提高在线社交媒体数据的完整性”。在UNM期间,她被任命为NSF研究生研究员,PiBBs研究员,Grace Hopper学者以及该领域的杰出研究生。 CS部门在2017年发表了她的作品。她曾在包括WWW,ASONAM,KDD,ICDM,SC,GTC和ICWE在内的顶级会议的程序委员会上发表论文并任职,并因此获得了论文研究专利。 Minnich博士还热衷于倡导技术女性。她是UNM第一个特许的女性参与计算小组的联合创始人并担任总裁,她经常在科技活动中为女性做志愿者,她将在Grace Hopper Celebration 2019担任人工智能专题的联合主席。

Abdullah Mueen,新墨西哥大学计算机科学的助理教授。在此之前,他曾是Microsoft Corporation云和信息科学实验室的科学家。 他的主要兴趣是时间数据挖掘,重点是两种独特的信号类型:社交网络和电子传感器。 他一直积极参与数据挖掘会议,包括KDD,ICDM和SDM,以及包括DMKD和KAIS在内的期刊。 他在2012年KDD博士论文竞赛中获得亚军。他在SIGKDD 2012上获得了最佳论文奖。他的研究由NSF,DARPA和AFRL资助。 此前,他在加利福尼亚大学河滨分校获得博士学位,并在孟加拉国工程技术大学获得理学学士学位。

代码链接:https://www.cs.unm.edu/~chavoshi/debot/

成为VIP会员查看完整内容
0
2

最新内容

In this work, we initiate the study of proximity testing to Algebraic Geometry (AG) codes. An AG code $C = C(\mathcal{C}, \mathcal{P}, D)$ is a vector space associated to evaluations on $\mathcal{P}$ of functions in the Riemann-Roch space $L_{\mathcal{C}}(D)$. The problem of testing proximity to an error-correcting code $C$ consists in distinguishing between the case where an input word, given as an oracle, belongs to $C$ and the one where it is far from every codeword of $C$. AG codes are good candidates to construct short proof systems, but there exists no efficient proximity tests for them. We aim to fill this gap. We construct an Interactive Oracle Proof of Proximity (IOPP) for some families of AG codes by generalizing an IOPP for Reed-Solomon codes introduced by Ben-Sasson, Bentov, Horesh and Riabzev, known as the FRI protocol. We identify suitable requirements for designing efficient IOPP systems for AG codes. In addition to proposing the first proximity test targeting AG codes, our IOPP admits quasilinear prover arithmetic complexity and sublinear verifier arithmetic complexity with constant soundness for meaningful classes of AG codes. We take advantage of the algebraic geometry framework that makes any group action on the curve that fixes the divisor $D$ translate into a decomposition of the code $C$. Concretely, our approach relies on Kani's result that splits the Riemann-Roch space of any invariant divisor under this action into several explicit Riemann-Roch spaces on the quotient curve. Under some hypotheses, these spaces behave well enough to define an AG code $C'$ on the quotient curve so that a proximity test to $C$ can be reduced to one to $C'$. Iterating this process thoroughly, we end up with a membership test to a code with significantly smaller length.

0
0
下载
预览

最新论文

In this work, we initiate the study of proximity testing to Algebraic Geometry (AG) codes. An AG code $C = C(\mathcal{C}, \mathcal{P}, D)$ is a vector space associated to evaluations on $\mathcal{P}$ of functions in the Riemann-Roch space $L_{\mathcal{C}}(D)$. The problem of testing proximity to an error-correcting code $C$ consists in distinguishing between the case where an input word, given as an oracle, belongs to $C$ and the one where it is far from every codeword of $C$. AG codes are good candidates to construct short proof systems, but there exists no efficient proximity tests for them. We aim to fill this gap. We construct an Interactive Oracle Proof of Proximity (IOPP) for some families of AG codes by generalizing an IOPP for Reed-Solomon codes introduced by Ben-Sasson, Bentov, Horesh and Riabzev, known as the FRI protocol. We identify suitable requirements for designing efficient IOPP systems for AG codes. In addition to proposing the first proximity test targeting AG codes, our IOPP admits quasilinear prover arithmetic complexity and sublinear verifier arithmetic complexity with constant soundness for meaningful classes of AG codes. We take advantage of the algebraic geometry framework that makes any group action on the curve that fixes the divisor $D$ translate into a decomposition of the code $C$. Concretely, our approach relies on Kani's result that splits the Riemann-Roch space of any invariant divisor under this action into several explicit Riemann-Roch spaces on the quotient curve. Under some hypotheses, these spaces behave well enough to define an AG code $C'$ on the quotient curve so that a proximity test to $C$ can be reduced to one to $C'$. Iterating this process thoroughly, we end up with a membership test to a code with significantly smaller length.

0
0
下载
预览
Top