大多数概率模型中, 计算后验边际或准确计算归一化常数都是很困难的. 变分推断(variational inference)是一个近似计算这两者的框架. 变分推断把推断看作优化问题: 我们尝试根据某种距离度量来寻找一个与真实后验尽可能接近的分布(或者类似分布的表示).

Deep generative models such as Variational AutoEncoder (VAE) and Generative Adversarial Network (GAN) play an increasingly important role in machine learning and computer vision. However, there are two fundamental issues hindering their real-world applications: the difficulty of conducting variational inference in VAE and the functional absence of encoding real-world samples in GAN. In this paper, we propose a novel algorithm named Latently Invertible Autoencoder (LIA) to address the above two issues in one framework. An invertible network and its inverse mapping are symmetrically embedded in the latent space of VAE. Thus the partial encoder first transforms the input into feature vectors and then the distribution of these feature vectors is reshaped to fit a prior by the invertible network. The decoder proceeds in the reverse order of the encoder's composite mappings. A two-stage stochasticity-free training scheme is designed to train LIA via adversarial learning, in the sense that the decoder of LIA is first trained as a standard GAN with the invertible network and then the partial encoder is learned from an autoencoder by detaching the invertible network from LIA. Experiments conducted on the FFHQ face dataset and three LSUN datasets validate the effectiveness of LIA for inference and generation.

0+
0+
下载
预览

We propose a scalable Bayesian preference learning method for jointly predicting the preferences of individuals as well as the consensus of a crowd from pairwise labels. Peoples' opinions often differ greatly, making it difficult to predict their preferences from small amounts of personal data. Individual biases also make it harder to infer the consensus of a crowd when there are few labels per item. We address these challenges by combining matrix factorisation with Gaussian processes, using a Bayesian approach to account for uncertainty arising from noisy and sparse data. Our method exploits input features, such as text embeddings and user metadata, to predict preferences for new items and users that are not in the training set. As previous solutions based on Gaussian processes do not scale to large numbers of users, items or pairwise labels, we propose a stochastic variational inference approach that limits computational and memory costs. Our experiments on a recommendation task show that our method is competitive with previous approaches despite our scalable inference approximation. We demonstrate the method's scalability on a natural language processing task with thousands of users and items, and show improvements over the state of the art on this task. We make our software publicly available for future work.

0+
0+
下载
预览

Data poisoning attacks compromise the integrity of machine-learning models by introducing malicious training samples to influence the results during test time. In this work, we investigate backdoor data poisoning attack on deep neural networks (DNNs) by inserting a backdoor pattern in the training images. The resulting attack will misclassify poisoned test samples while maintaining high accuracies for the clean test-set. We present two approaches for detection of such poisoned samples by quantifying the uncertainty estimates associated with the trained models. In the first approach, we model the outputs of the various layers (deep features) with parametric probability distributions learnt from the clean held-out dataset. At inference, the likelihoods of deep features w.r.t these distributions are calculated to derive uncertainty estimates. In the second approach, we use Bayesian deep neural networks trained with mean-field variational inference to estimate model uncertainty associated with the predictions. The uncertainty estimates from these methods are used to discriminate clean from the poisoned samples.

0+
0+
下载
预览

Variational inference transforms posterior inference into parametric optimization thereby enabling the use of latent variable models where otherwise impractical. However, variational inference can be finicky when different variational parameters control variables that are strongly correlated under the model. Traditional natural gradients based on the variational approximation fail to correct for correlations when the approximation is not the true posterior. To address this, we construct a new natural gradient called the Variational Predictive Natural Gradient (VPNG). Unlike traditional natural gradients for variational inference, this natural gradient accounts for the relationship between model parameters and variational parameters. We demonstrate the insight with a simple example as well as the empirical value on a classification task, a deep generative model of images, and probabilistic matrix factorization for recommendation.

0+
0+
下载
预览

We introduce the thermodynamic variational objective (TVO) for learning in both continuous and discrete deep generative models. The TVO arises from a key connection between variational inference and thermodynamic integration that results in a tighter lower bound to the log marginal likelihood than the standard variational variational evidence lower bound (ELBO) while remaining as broadly applicable. We provide a computationally efficient gradient estimator for the TVO that applies to continuous, discrete, and non-reparameterizable distributions and show that the objective functions used in variational inference, variational autoencoders, wake sleep, and inference compilation are all special cases of the TVO. We use the TVO to learn both discrete and continuous deep generative models and empirically demonstrate state of the art model and inference network learning.

1+
0+
下载
预览

In this paper we propose a statistical model for dynamically evolving networks, together with a variational inference approach. Our model, which we call Dynamic Latent Attribute Interaction Model (DLAIM), encodes edge dependencies across different time snapshots. It represents nodes via latent attributes and uses attribute interaction matrices to model the presence of edges. Both are allowed to evolve with time, thus allowing us to capture the dynamics of the network. We develop a neural network based variational inference procedure that provides a suitable way to learn the model parameters. The main strengths of DLAIM are: (i) it is flexible as it does not impose strict assumptions on network evolution unlike existing approaches, (ii) it applies to both directed as well as undirected networks, and more importantly, (iii) learned node attributes and interaction matrices may be interpretable and therefore provide insights on the mechanisms behind network evolution. Experiments done on real world networks for the task of link forecasting demonstrate the superior performance of our model as compared to existing approaches.

0+
0+
下载
预览

Deriving Bayesian inference for exponential random graph models (ERGMs) is a challenging "doubly intractable" problem as the normalizing constants of the likelihood and posterior density are both intractable. Markov chain Monte Carlo (MCMC) methods which yield Bayesian inference for ERGMs, such as the exchange algorithm, are asymptotically exact but computationally intensive, as a network has to be drawn from the likelihood at every step using, for instance, a "tie no tie" sampler. In this article, we develop a variety of variational methods for Gaussian approximation of the posterior density and model selection. These include nonconjugate variational message passing based on an adjusted pseudolikelihood and stochastic variational inference. To overcome the computational hurdle of drawing a network from the likelihood at each iteration, we propose stochastic gradient ascent with biased but consistent gradient estimates computed using adaptive self-normalized importance sampling. These methods provide attractive fast alternatives to MCMC for posterior approximation. We illustrate the variational methods using real networks and compare their accuracy with results obtained via MCMC and Laplace approximation.

0+
0+
下载
预览

In many real-world applications of machine learning, data are distributed across many clients and cannot leave the devices they are stored on. Furthermore, each client's data, computational resources and communication constraints may be very different. This setting is known as federated learning, in which privacy is a key concern. Differential privacy is commonly used to provide mathematical privacy guarantees. This work, to the best of our knowledge, is the first to consider federated, differentially private, Bayesian learning. We build on Partitioned Variational Inference (PVI) which was recently developed to support approximate Bayesian inference in the federated setting. We modify the client-side optimisation of PVI to provide an (${\epsilon}$, ${\delta}$)-DP guarantee. We show that it is possible to learn moderately private logistic regression models in the federated setting that achieve similar performance to models trained non-privately on centralised data.

0+
0+
下载
预览

We propose a method to approximate the distribution of robot configurations satisfying multiple objectives. Our approach uses variational inference, a popular method in Bayesian computation, which has several advantages over sampling-based techniques. To be able to represent the complex and multimodal distribution of configurations, we propose to use a mixture model as approximate distribution, an approach that has gained popularity recently. In this work, we show the interesting properties of this approach and how it can be applied to a wide range of problems in robotics.

0+
0+
下载
预览

Bayesian neural networks (BNNs) introduce uncertainty estimation to deep networks by performing Bayesian inference on network weights. However, such models bring the challenges of inference, and further BNNs with weight uncertainty rarely achieve superior performance to standard models. In this paper, we investigate a new line of Bayesian deep learning by performing Bayesian reasoning on the structure of deep neural networks. Drawing inspiration from the neural architecture search, we define the network structure as gating weights on the redundant operations between computational nodes, and apply stochastic variational inference techniques to learn the structure distributions of networks. Empirically, the proposed method substantially surpasses the advanced deep neural networks across a range of classification and segmentation tasks. More importantly, our approach also preserves benefits of Bayesian principles, producing improved uncertainty estimation than the strong baselines including MC dropout and variational BNNs algorithms (e.g. noisy EK-FAC).

0+
0+
下载
预览
Top