新加坡国立大学(简称国大),是新加坡首屈一指的世界级顶尖大学。国大在工程、生命科学及生物医学、社会科学及自然科学等领域的研究享有世界盛名。在2015QS世界大学排名中,国大名列第12位。

VIP内容

** 简介:**

推荐方法构造了预测模型,以估计用户与项目交互的可能性。先前的模型在很大程度上遵循一般的监督学习范式-将每个交互视为一个单独的数据实例,并基于“信息孤岛”进行预测。但是,此类方法忽略了数据实例之间的关系,这可能导致性能欠佳,尤其是对于稀疏场景。此外,建立在单独数据实例上的模型几乎无法显示出推荐背后的原因,从而使过程难以理解。

在本教程中,我们将从图学习的角度重新审视推荐问题。可以将用于推荐的通用数据源组织成图形,例如用户-项目交互(二分图),社交网络,项目知识图(异构图)等。这种基于图的组织将孤立的数据实例连接起来,从而为利用高阶连通性带来了好处,这些高阶连通性对有意义的模式进行了编码,以进行协作过滤,基于内容的过滤,社会影响力建模和知识感知推理。结合图神经网络(GNN)的最新成功,基于图的模型已展现出成为下一代推荐系统技术的潜力。本教程对基于图的学​​习方法进行了回顾,以提出建议,特别关注GNN的最新发展和知识图谱增强的建议。通过在本教程中介绍这个新兴而有前途的领域,我们希望观众可以对空间有深入的了解和准确的见解,激发更多的想法和讨论,并促进技术的发展。

目录:

作者简介:

王翔是新加坡国立大学(NUS)计算机学院的研究员。 他获得了博士学位。 他于2019年获得国大计算机科学博士学位。他的研究兴趣包括推荐系统,信息检索和数据挖掘。 在SIGIR,KDD,WWW和AAAI等顶级会议上,他拥有20多种出版物,包括TOIS和TKDE等期刊。 他曾担任CCIS 2019的本地主席,包括SIGIR,CIKM和MM在内的顶级会议的PC成员以及TKDE和TOIS等著名期刊的定期审稿人。

成为VIP会员查看完整内容
0
60

最新论文

Learning on 3D scene-based point cloud has received extensive attention as its promising application in many fields, and well-annotated and multisource datasets can catalyze the development of those data-driven approaches. To facilitate the research of this area, we present a richly-annotated 3D point cloud dataset for multiple outdoor scene understanding tasks and also an effective learning framework for its hierarchical segmentation task. The dataset was generated via the photogrammetric processing on unmanned aerial vehicle (UAV) images of the National University of Singapore (NUS) campus, and has been point-wisely annotated with both hierarchical and instance-based labels. Based on it, we formulate a hierarchical learning problem for 3D point cloud segmentation and propose a measurement evaluating consistency across various hierarchies. To solve this problem, a two-stage method including multi-task (MT) learning and hierarchical ensemble (HE) with consistency consideration is proposed. Experimental results demonstrate the superiority of the proposed method and potential advantages of our hierarchical annotations. In addition, we benchmark results of semantic and instance segmentation, which is accessible online at https://3d.dataset.site with the dataset and all source codes.

0
0
下载
预览
Top