深度神经网络(DNN)是深度学习的一种框架,它是一种具备至少一个隐层的神经网络。与浅层神经网络类似,深度神经网络也能够为复杂非线性系统提供建模,但多出的层次为模型提供了更高的抽象层次,因而提高了模型的能力。

VIP内容

书名: Deep Learning for Search

简介:

深度学习搜索是一本实用的书,关于如何使用(深度)神经网络来帮助建立有效的搜索引擎。这本书研究了一个搜索引擎的几个组成部分,提供了关于它们如何工作的见解以及如何在每个环境中使用神经网络的指导。重点介绍了基于实例的实用搜索和深度学习技术,其中大部分都有代码。同时,在适当的地方提供相关研究论文的参考资料,以鼓励阅读更多的书籍,加深对特定主题的知识。

读完这本书,将对搜索引擎的主要挑战有所理解,它们是如何被普遍解决的以及深度学习可以做些什么来帮助。并且将对几种不同的深度学习技术以及它们在搜索环境中的适用范围有一个理解,将很好地了解Lucene和Deeplearning4j库。

这本书主要分为3个部分:

  • 第1部分介绍了搜索、机器学习和深度学习的基本概念。第一章介绍了应用深度学习技术来搜索问题的原理,涉及了信息检索中最常见的方法。第2章给出了如何使用神经网络模型从数据中生成同义词来提高搜索引擎效率的第一个例子。

  • 第2部分讨论了可以通过深度神经网络更好地解决的常见搜索引擎任务。第3章介绍了使用递归神经网络来生成用户输入的查询。第四章在深度神经网络的帮助下,在用户输入查询时提供更好的建议。第5章重点介绍了排序模型:尤其是如何使用词嵌入提供更相关的搜索结果。第6章讨论了文档嵌入在排序函数和内容重新编码上下文中的使用。

  • 第3部分将介绍更复杂的场景,如深度学习机器翻译和图像搜索。第7章通过基于神经网络的方法为你的搜索引擎提供多语言能力来指导你。第8章讨论了基于内容的图像集合的搜索,并使用了深度学习模型。第9章讨论了与生产相关的主题,如微调深度学习模型和处理不断输入的数据流。

作者简介:

Tommaso Teofili是一名软件工程师,他对开源机器学习充满热情。作为Apache软件基金会的成员,他为许多开放源码项目做出了贡献,从信息检索到自然语言处理和机器翻译等主题。他目前在Adobe工作,开发搜索和索引基础结构组件,并研究自然语言处理、信息检索和深度学习等领域。他曾在各种会议上发表过搜索和机器学习方面的演讲,包括BerlinBuzzwords、计算科学国际会议、ApacheCon、EclipseCon等。

成为VIP会员查看完整内容
42+
0+
更多VIP内容

最新论文

Detecting spoofed utterances is a fundamental problem in voice-based biometrics. Spoofing can be performed either by logical accesses like speech synthesis, voice conversion or by physical accesses such as replaying the pre-recorded utterance. Inspired by the state-of-the-art \emph{x}-vector based speaker verification approach, this paper proposes a time-delay shallow neural network (TD-SNN) for spoof detection for both logical and physical access. The novelty of the proposed TD-SNN system vis-a-vis conventional DNN systems is that it can handle variable length utterances during testing. Performance of the proposed TD-SNN systems and the baseline Gaussian mixture models (GMMs) is analyzed on the ASV-spoof-2019 dataset. The performance of the systems is measured in terms of the minimum normalized tandem detection cost function (min-t-DCF). When studied with individual features, the TD-SNN system consistently outperforms the GMM system for physical access. For logical access, GMM surpasses TD-SNN systems for certain individual features. When combined with the decision-level feature switching (DLFS) paradigm, the best TD-SNN system outperforms the best baseline GMM system on evaluation data with a relative improvement of 48.03\% and 49.47\% for both logical and physical access, respectively.

0+
0+
下载
预览
更多最新论文
Top