这个新版本的工具会议系列恢复了从1989年到2012年的50个会议的传统。工具最初是“面向对象语言和系统的技术”,后来发展到包括软件技术的所有创新方面。今天许多最重要的软件概念都是在这里首次引入的。2019年TOOLS 50+1在俄罗斯喀山附近举行,以同样的创新精神、对所有与软件相关的事物的热情、科学稳健性和行业适用性的结合以及欢迎该领域所有趋势和社区的开放态度,延续了该系列。 官网链接:http://tools2019.innopolis.ru/

热门内容

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

0
68
下载
预览

最新论文

Exact null distributions of goodness-of-fit test statistics are generally challenging to obtain in tractable forms. Practitioners are therefore usually obliged to rely on asymptotic null distributions or Monte Carlo methods, either in the form of a lookup table or carried out on demand, to apply a goodness-of-fit test. Stephens (1970) provided remarkable simple and useful transformations of several classic goodness-of-fit test statistics that stabilized their exact-$n$ critical values for varying sample sizes $n$. However, detail on the accuracy of these and subsequent transformations in yielding exact $p$-values, or even deep understanding on the derivation of several transformations, is still scarce nowadays. We illuminate and automatize, using modern tools, the latter stabilization approach to (i) expand its scope of applicability and (ii) yield semi-continuous exact $p$-values, as opposed to exact critical values for fixed significance levels. We show improvements on the stabilization accuracy of the exact null distributions of the Kolmogorov-Smirnov, Cram\'er-von Mises, Anderson-Darling, Kuiper, and Watson test statistics. In addition, we provide a parameter-dependent exact-$n$ stabilization for several novel statistics for testing uniformity on the hypersphere of arbitrary dimension. A data application in astronomy illustrates the benefits of the advocated stabilization for quickly analyzing small-to-moderate sequentially-measured samples.

0
0
下载
预览
Top