这个新版本的工具会议系列恢复了从1989年到2012年的50个会议的传统。工具最初是“面向对象语言和系统的技术”,后来发展到包括软件技术的所有创新方面。今天许多最重要的软件概念都是在这里首次引入的。2019年TOOLS 50+1在俄罗斯喀山附近举行,以同样的创新精神、对所有与软件相关的事物的热情、科学稳健性和行业适用性的结合以及欢迎该领域所有趋势和社区的开放态度,延续了该系列。 官网链接:http://tools2019.innopolis.ru/

热门内容

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

0
65
下载
预览

最新内容

Many software development problems can be addressed by program analysis tools, which traditionally are based on precise, logical reasoning and heuristics to ensure that the tools are practical. Recent work has shown tremendous success through an alternative way of creating developer tools, which we call neural software analysis. The key idea is to train a neural machine learning model on numerous code examples, which, once trained, makes predictions about previously unseen code. In contrast to traditional program analysis, neural software analysis naturally handles fuzzy information, such as coding conventions and natural language embedded in code, without relying on manually encoded heuristics. This article gives an overview of neural software analysis, discusses when to (not) use it, and presents three example analyses. The analyses address challenging software development problems: bug detection, type prediction, and code completion. The resulting tools complement and outperform traditional program analyses, and are used in industrial practice.

0
0
下载
预览

最新论文

Many software development problems can be addressed by program analysis tools, which traditionally are based on precise, logical reasoning and heuristics to ensure that the tools are practical. Recent work has shown tremendous success through an alternative way of creating developer tools, which we call neural software analysis. The key idea is to train a neural machine learning model on numerous code examples, which, once trained, makes predictions about previously unseen code. In contrast to traditional program analysis, neural software analysis naturally handles fuzzy information, such as coding conventions and natural language embedded in code, without relying on manually encoded heuristics. This article gives an overview of neural software analysis, discusses when to (not) use it, and presents three example analyses. The analyses address challenging software development problems: bug detection, type prediction, and code completion. The resulting tools complement and outperform traditional program analyses, and are used in industrial practice.

0
0
下载
预览
Top