BASE就是为了解决关系数据库强一致性引起的问题而引起的可用性降低而提出的解决方案。

VIP内容

摘要:深度学习是近年来应用最广泛的心脏图像分割方法。在这篇文章中,我们回顾了超过100篇使用深度学习的心脏图像分割论文,这些论文涵盖了常见的成像方式,包括磁共振成像(MRI)、计算机断层扫描(CT)和超声(US)以及感兴趣的主要解剖结构(心室、心房和血管)。此外,公开可用的心脏图像数据集和代码库的摘要也包括在内,为鼓励重复性研究提供了基础。最后,我们讨论了当前基于深度学习的方法的挑战和局限性(缺乏标签、不同领域的模型可泛化性、可解释性),并提出了未来研究的潜在方向。

成为VIP会员查看完整内容
0
21

最新论文

This paper extends recent work on boosting random forests to model non-Gaussian responses. Given an exponential family $\mathbb{E}[Y|X] = g^{-1}(f(X))$ our goal is to obtain an estimate for $f$. We start with an MLE-type estimate in the link space and then define generalised residuals from it. We use these residuals and some corresponding weights to fit a base random forest and then repeat the same to obtain a boost random forest. We call the sum of these three estimators a \textit{generalised boosted forest}. We show with simulated and real data that both the random forest steps reduces test-set log-likelihood, which we treat as our primary metric. We also provide a variance estimator, which we can obtain with the same computational cost as the original estimate itself. Empirical experiments on real-world data and simulations demonstrate that the methods can effectively reduce bias, and that confidence interval coverage is conservative in the bulk of the covariate distribution.

0
0
下载
预览
Top