分布式机器学习研究将具有大规模数据量和计算量的任务分布式地部署到多台机器上,其核心思想在于“分而治之”,有效提高了大规模数据计算的速度并节省了开销。

最新内容

We propose a framework for training neural networks that are coupled with partial differential equations (PDEs) in a parallel computing environment. Unlike most distributed computing frameworks for deep neural networks, our focus is to parallelize both numerical solvers and deep neural networks in forward and adjoint computations. Our parallel computing model views data communication as a node in the computational graph for numerical simulations. The advantage of our model is that data communication and computing are cleanly separated and thus provide better flexibility, modularity, and testability. We demonstrate using various large-scale problems that we can achieve substantial acceleration by using parallel solvers for PDEs in training deep neural networks that are coupled with PDEs.

0
0
下载
预览

最新论文

We propose a framework for training neural networks that are coupled with partial differential equations (PDEs) in a parallel computing environment. Unlike most distributed computing frameworks for deep neural networks, our focus is to parallelize both numerical solvers and deep neural networks in forward and adjoint computations. Our parallel computing model views data communication as a node in the computational graph for numerical simulations. The advantage of our model is that data communication and computing are cleanly separated and thus provide better flexibility, modularity, and testability. We demonstrate using various large-scale problems that we can achieve substantial acceleration by using parallel solvers for PDEs in training deep neural networks that are coupled with PDEs.

0
0
下载
预览
父主题
Top