Surge 是 iOS 与 macOS 平台上的 Web 开发人员工具与代理实用程序。 Surge - Advanced Web Debugging Proxy for Mac & iOS

热门内容

Sentiment analysis is proven to be very useful tool in many applications regarding social media. This has led to a great surge of research in this field. Hence, in this paper, we compile the baselines for such research. In this paper, we explore three different deep-learning based architectures for multimodal sentiment classification, each improving upon the previous. Further, we evaluate these architectures with multiple datasets with fixed train/test partition. We also discuss some major issues, frequently ignored in multimodal sentiment analysis research, e.g., role of speaker-exclusive models, importance of different modalities, and generalizability. This framework illustrates the different facets of analysis to be considered while performing multimodal sentiment analysis and, hence, serves as a new benchmark for future research in this emerging field. We draw a comparison among the methods using empirical data, obtained from the experiments. In the future, we plan to focus on extracting semantics from visual features, cross-modal features and fusion.

0
8
下载
预览

最新内容

Open-domain Question Answering (OpenQA) is an important task in Natural Language Processing (NLP), which aims to answer a question in the form of natural language based on large-scale unstructured documents. Recently, there has been a surge in the amount of research literature on OpenQA, particularly on techniques that integrate with neural Machine Reading Comprehension (MRC). While these research works have advanced performance to new heights on benchmark datasets, they have been rarely covered in existing surveys on QA systems. In this work, we review the latest research trends in OpenQA, with particular attention to systems that incorporate neural MRC techniques. Specifically, we begin with revisiting the origin and development of OpenQA systems. We then introduce modern OpenQA architecture named "Retriever-Reader" and analyze the various systems that follow this architecture as well as the specific techniques adopted in each of the components. We then discuss key challenges to developing OpenQA systems and offer an analysis of benchmarks that are commonly used. We hope our work would enable researchers to be informed of the recent advancement and also the open challenges in OpenQA research, so as to stimulate further progress in this field.

0
0
下载
预览

最新论文

Open-domain Question Answering (OpenQA) is an important task in Natural Language Processing (NLP), which aims to answer a question in the form of natural language based on large-scale unstructured documents. Recently, there has been a surge in the amount of research literature on OpenQA, particularly on techniques that integrate with neural Machine Reading Comprehension (MRC). While these research works have advanced performance to new heights on benchmark datasets, they have been rarely covered in existing surveys on QA systems. In this work, we review the latest research trends in OpenQA, with particular attention to systems that incorporate neural MRC techniques. Specifically, we begin with revisiting the origin and development of OpenQA systems. We then introduce modern OpenQA architecture named "Retriever-Reader" and analyze the various systems that follow this architecture as well as the specific techniques adopted in each of the components. We then discuss key challenges to developing OpenQA systems and offer an analysis of benchmarks that are commonly used. We hope our work would enable researchers to be informed of the recent advancement and also the open challenges in OpenQA research, so as to stimulate further progress in this field.

0
0
下载
预览
Top