热门内容

While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.

0
11
下载
预览

最新内容

Hate speech detection has become an important research topic within the past decade. More private corporations are needing to regulate user generated content on different platforms across the globe. In this paper, we introduce a study of multilingual hate speech classification. We compile a dataset of 11 languages and resolve different taxonomies by analyzing the combined data with binary labels: hate speech or not hate speech. Defining hate speech in a single way across different languages and datasets may erase cultural nuances to the definition, therefore, we utilize language agnostic embeddings provided by LASER and MUSE in order to develop models that can use a generalized definition of hate speech across datasets. Furthermore, we evaluate prior state of the art methodologies for hate speech detection under our expanded dataset. We conduct three types of experiments for a binary hate speech classification task: Multilingual-Train Monolingual-Test, MonolingualTrain Monolingual-Test and Language-Family-Train Monolingual Test scenarios to see if performance increases for each language due to learning more from other language data.

0
0
下载
预览

最新论文

Hate speech detection has become an important research topic within the past decade. More private corporations are needing to regulate user generated content on different platforms across the globe. In this paper, we introduce a study of multilingual hate speech classification. We compile a dataset of 11 languages and resolve different taxonomies by analyzing the combined data with binary labels: hate speech or not hate speech. Defining hate speech in a single way across different languages and datasets may erase cultural nuances to the definition, therefore, we utilize language agnostic embeddings provided by LASER and MUSE in order to develop models that can use a generalized definition of hate speech across datasets. Furthermore, we evaluate prior state of the art methodologies for hate speech detection under our expanded dataset. We conduct three types of experiments for a binary hate speech classification task: Multilingual-Train Monolingual-Test, MonolingualTrain Monolingual-Test and Language-Family-Train Monolingual Test scenarios to see if performance increases for each language due to learning more from other language data.

0
0
下载
预览
参考链接
父主题
Top
微信扫码咨询专知VIP会员