在数学中,随机漫步是一种数学对象,称为随机过程或随机过程,它描述的路径由在某些数学空间(例如整数)上的一系列随机步骤组成。随机行走等是指基于过去的表现,无法预测将来的发展步骤和方向。核心概念是指任何无规则行走者所带的守恒量都各自对应着一个扩散运输定律 ,接近于布朗运动,是布朗运动理想的数学状态,现阶段主要应用于互联网链接分析及金融股票市场中。

最新内容

We provide improved upper bounds for the simultaneous sketching complexity of edit distance. Consider two parties, Alice with input $x\in\Sigma^n$ and Bob with input $y\in\Sigma^n$, that share public randomness and are given a promise that the edit distance $\mathsf{ed}(x,y)$ between their two strings is at most some given value $k$. Alice must send a message $sx$ and Bob must send $sy$ to a third party Charlie, who does not know the inputs but shares the same public randomness and also knows $k$. Charlie must output $\mathsf{ed}(x,y)$ precisely as well as a sequence of $\mathsf{ed}(x,y)$ edits required to transform $x$ into $y$. The goal is to minimize the lengths $|sx|, |sy|$ of the messages sent. The protocol of Belazzougui and Zhang (FOCS 2016), building upon the random walk method of Chakraborty, Goldenberg, and Kouck\'y (STOC 2016), achieves a maximum message length of $\tilde O(k^8)$ bits, where $\tilde O(\cdot)$ hides $\mathrm{poly}(\log n)$ factors. In this work we build upon Belazzougui and Zhang's protocol and provide an improved analysis demonstrating that a slight modification of their construction achieves a bound of $\tilde O(k^3)$.

0
0
下载
预览

最新论文

We provide improved upper bounds for the simultaneous sketching complexity of edit distance. Consider two parties, Alice with input $x\in\Sigma^n$ and Bob with input $y\in\Sigma^n$, that share public randomness and are given a promise that the edit distance $\mathsf{ed}(x,y)$ between their two strings is at most some given value $k$. Alice must send a message $sx$ and Bob must send $sy$ to a third party Charlie, who does not know the inputs but shares the same public randomness and also knows $k$. Charlie must output $\mathsf{ed}(x,y)$ precisely as well as a sequence of $\mathsf{ed}(x,y)$ edits required to transform $x$ into $y$. The goal is to minimize the lengths $|sx|, |sy|$ of the messages sent. The protocol of Belazzougui and Zhang (FOCS 2016), building upon the random walk method of Chakraborty, Goldenberg, and Kouck\'y (STOC 2016), achieves a maximum message length of $\tilde O(k^8)$ bits, where $\tilde O(\cdot)$ hides $\mathrm{poly}(\log n)$ factors. In this work we build upon Belazzougui and Zhang's protocol and provide an improved analysis demonstrating that a slight modification of their construction achieves a bound of $\tilde O(k^3)$.

0
0
下载
预览
Top