人工神经网络(Artificial Neural Network,即ANN),它从信息处理角度对人脑神经元网络进行抽象,建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。

VIP内容

单幅图像超分辨率重建是计算机视觉领域上的一个重要问题, 在安防视频监控、飞机航拍以及卫星遥感等方面具有重要的研究意义和应用价值. 近年来, 深度学习在图像分类、检测、识别等诸多领域中取得了突破性进展, 也推动着图像超分辨率重建技术的发展. 本文首先介绍单幅图像超分辨率重建的常用公共图像数据集; 然后重点阐述基于深度学习的单幅图像超分辨率重建方向的创新与进展; 最后讨论了单幅图像超分辨率重建方向上存在的困难和挑战, 并对未来的发展趋势进行了思考与展望.

http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.c190859

成为VIP会员查看完整内容
0
15

最新论文

Structures suffer from the emergence of cracks, therefore, crack detection is always an issue with much concern in structural health monitoring. Along with the rapid progress of deep learning technology, image semantic segmentation, an active research field, offers another solution, which is more effective and intelligent, to crack detection Through numerous artificial neural networks have been developed to address the preceding issue, corresponding explorations are never stopped improving the quality of crack detection. This paper presents a novel artificial neural network architecture named Full Attention U-net for image semantic segmentation. The proposed architecture leverages the U-net as the backbone and adopts the Full Attention Strategy, which is a synthesis of the attention mechanism and the outputs from each encoding layer in skip connection. Subject to the hardware in training, the experiments are composed of verification and validation. In verification, 4 networks including U-net, Attention U-net, Advanced Attention U-net, and Full Attention U-net are tested through cell images for a competitive study. With respect to mean intersection-over-unions and clarity of edge identification, the Full Attention U-net performs best in verification, and is hence applied for crack semantic segmentation in validation to demonstrate its effectiveness.

0
0
下载
预览
Top