人工神经网络(Artificial Neural Network,即ANN),它从信息处理角度对人脑神经元网络进行抽象,建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。

VIP内容

讲座题目

深层贝叶斯挖掘、学习与理解:Deep Bayesian Mining, Learning and Understanding

讲座简介

本教程介绍了自然语言的深度贝叶斯学习的进展,其应用广泛,从语音识别到文档摘要、文本分类、文本分割、信息提取、图像字幕生成、句子生成、对话控制、情感分类、推荐系统,问答和机器翻译,举几个例子。传统上,“深度学习”被认为是一种基于实值确定性模型进行推理或优化的学习过程。从大量词汇中提取的单词、句子、实体、动作和文档中的“语义结构”在数学逻辑或计算机程序中可能没有得到很好的表达或正确的优化。自然语言离散或连续潜变量模型中的“分布函数”可能无法正确分解或估计。本教程介绍了统计模型和神经网络的基本原理,重点介绍了一系列先进的贝叶斯模型和深层模型,包括分层Dirichlet过程、中餐馆过程、分层Pitman-Yor过程、印度自助餐过程、递归神经网络、长时短期记忆,序列到序列模型,变分自动编码器,生成对抗网络,注意机制,记忆增强神经网络,跳跃神经网络,随机神经网络,预测状态神经网络,策略神经网络。我们将介绍这些模型是如何连接的,以及它们为什么在自然语言中的符号和复杂模式的各种应用中起作用。为了解决复杂模型的优化问题,提出了变分推理和抽样方法。词和句子的嵌入、聚类和共聚类与语言和语义约束相结合。本文提出了一系列的案例研究,以解决深度贝叶斯挖掘、学习和理解中的不同问题。最后,我们将指出未来研究的一些方向和展望。

讲座嘉宾

Jen-Tzung Chien,詹增建于一九九七年获中华民国新竹国立清华大学电机工程博士学位。现任台湾新竹国立交通大学电机与电脑工程系及电脑科学系主任教授。2010年,他在纽约约克敦高地IBM T.J.沃森研究中心担任客座教授。他的研究兴趣包括机器学习、深度学习、自然语言处理和计算机视觉。

成为VIP会员查看完整内容
16+
0+
更多VIP内容
Top