机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/

Collaborative machine learning (ML), also known as federated ML, allows participants to jointly train a model without data sharing. To update the model parameters, the central parameter server broadcasts model parameters to the participants, and the participants send ascending directions such as gradients to the server. While data do not leave a participant's device, the communicated gradients and parameters will leak a participant's privacy. Prior work proposed attacks that infer participant's privacy from gradients and parameters, and they showed simple defenses like dropout and differential privacy do not help much. To defend privacy leakage, we propose a method called Double Blind Collaborative Learning (DBCL) which is based on random matrix sketching. The high-level idea is to apply a random transformation to the parameters, data, and gradients in every iteration so that the existing attacks will fail or become less effective. While it improves the security of collaborative ML, DBCL does not increase the computation and communication cost much and does not hurt prediction accuracy at all. DBCL can be potentially applied to decentralized collaborative ML to defend privacy leakage.

0+
0+
下载
预览

Machine learning methods have recently achieved high-performance in biomedical text analysis. However, a major bottleneck in the widespread application of these methods is obtaining the required large amounts of annotated training data, which is resource intensive and time consuming. Recent progress in self-supervised learning has shown promise in leveraging large text corpora without explicit annotations. In this work, we built a self-supervised contextual language representation model using BERT, a deep bidirectional transformer architecture, to identify radiology reports requiring prompt communication to the referring physicians. We pre-trained the BERT model on a large unlabeled corpus of radiology reports and used the resulting contextual representations in a final text classifier for communication urgency. Our model achieved a precision of 97.0%, recall of 93.3%, and F-measure of 95.1% on an independent test set in identifying radiology reports for prompt communication, and significantly outperformed the previous state-of-the-art model based on word2vec representations.

0+
0+
下载
预览

Machine learning has started to be deployed in fields such as healthcare and finance, which propelled the need for and growth of privacy-preserving machine learning (PPML). We propose an actively secure four-party protocol (4PC), and a framework for PPML, showcasing its applications on four of the most widely-known machine learning algorithms -- Linear Regression, Logistic Regression, Neural Networks, and Convolutional Neural Networks. Our 4PC protocol tolerating at most one malicious corruption is practically efficient as compared to the existing works. We use the protocol to build an efficient mixed-world framework (Trident) to switch between the Arithmetic, Boolean, and Garbled worlds. Our framework operates in the offline-online paradigm over rings and is instantiated in an outsourced setting for machine learning. Also, we propose conversions especially relevant to privacy-preserving machine learning. The highlights of our framework include using a minimal number of expensive circuits overall as compared to ABY3. This can be seen in our technique for truncation, which does not affect the online cost of multiplication and removes the need for any circuits in the offline phase. Our B2A conversion has an improvement of $\mathbf{7} \times$ in rounds and $\mathbf{18} \times$ in the communication complexity. In addition to these, all of the special conversions for machine learning, e.g. Secure Comparison, achieve constant round complexity. The practicality of our framework is argued through improvements in the benchmarking of the aforementioned algorithms when compared with ABY3. All the protocols are implemented over a 64-bit ring in both LAN and WAN settings. Our improvements go up to $\mathbf{187} \times$ for the training phase and $\mathbf{158} \times$ for the prediction phase when observed over LAN and WAN.

0+
0+
下载
预览

Robust machine learning is currently one of the most prominent topics which could potentially help shaping a future of advanced AI platforms that not only perform well in average cases but also in worst cases or adverse situations. Despite the long-term vision, however, existing studies on black-box adversarial attacks are still restricted to very specific settings of threat models (e.g., single distortion metric and restrictive assumption on target model's feedback to queries) and/or suffer from prohibitively high query complexity. To push for further advances in this field, we introduce a general framework based on an operator splitting method, the alternating direction method of multipliers (ADMM) to devise efficient, robust black-box attacks that work with various distortion metrics and feedback settings without incurring high query complexity. Due to the black-box nature of the threat model, the proposed ADMM solution framework is integrated with zeroth-order (ZO) optimization and Bayesian optimization (BO), and thus is applicable to the gradient-free regime. This results in two new black-box adversarial attack generation methods, ZO-ADMM and BO-ADMM. Our empirical evaluations on image classification datasets show that our proposed approaches have much lower function query complexities compared to state-of-the-art attack methods, but achieve very competitive attack success rates.

0+
0+
下载
预览

The ability to analyze and forecast stratospheric weather conditions is fundamental to addressing climate change. However, our capacity to collect data in the stratosphere is limited by sparsely deployed weather balloons. We propose a framework to collect stratospheric data by releasing a contrail of tiny sensor devices as a weather balloon ascends. The key machine learning challenges are determining when and how to deploy a finite collection of sensors to produce a useful data set. We decide when to release sensors by modeling the deviation of a forecast from actual stratospheric conditions as a Gaussian process. We then implement a novel hardware system that is capable of optimally releasing sensors from a rising weather balloon. We show that this data engineering framework is effective through real weather balloon flights, as well as simulations.

0+
0+
下载
预览

Childhood obesity is a major public health challenge. Obesity in early childhood and adolescence can lead to obesity and other health risks in adulthood. Early prediction and identification of high-risk populations can help to prevent its development. With early identification, proper interventions can be used for its prevention. In this paper, we build prediction models to predict future BMI from baseline medical history data. We used unaugmented Nemours EHR (Electronic Health Record) data as represented in the PEDSnet (A pediatric Learning Health System) common data model. We trained variety of machine learning models to perform binary classification of obese, and non-obese for children in early childhood ages and during adolescence. We explored if deep learning techniques that can model the temporal nature of EHR data would improve the performance of predicting obesity as compared to other machine learning techniques that ignore temporality. We also added attention layer at top of rnn layer in our model to compute the attention scores of each hidden layer corresponding to each input timestep. The attention score for each timestep were computed as an average score given to all the features associated with the timestep. These attention scores added interpretability at both timestep level and the features associated with the timesteps.

0+
0+
下载
预览

With the increase of credit card usage, the volume of credit card misuse also has significantly increased. As a result, financial organizations are working hard on developing and deploying credit card fraud detection methods, in order to adapt to ever-evolving, increasingly sophisticated defrauding strategies and identifying illicit transactions as quickly as possible to protect themselves and their customers. Compounding on the complex nature of such adverse strategies, credit card fraudulent activities are rare events compared to the number of legitimate transactions. Hence, the challenge to develop fraud detection that are accurate and efficient is substantially intensified and, as a consequence, credit card fraud detection has lately become a very active area of research. In this work, we provide a survey of current techniques most relevant to the problem of credit card fraud detection. We carry out our survey in two main parts. In the first part,we focus on studies utilizing classical machine learning models, which mostly employ traditional transnational features to make fraud predictions. These models typically rely on some static physical characteristics, such as what the user knows (knowledge-based method), or what he/she has access to (object-based method). In the second part of our survey, we review more advanced techniques of user authentication, which use behavioral biometrics to identify an individual based on his/her unique behavior while he/she is interacting with his/her electronic devices. These approaches rely on how people behave (instead of what they do), which cannot be easily forged. By providing an overview of current approaches and the results reported in the literature, this survey aims to drive the future research agenda for the community in order to develop more accurate, reliable and scalable models of credit card fraud detection.

1+
0+
下载
预览
父主题
Top