表示学习是通过利用训练数据来学习得到向量表示,这可以克服人工方法的局限性。 表示学习通常可分为两大类,无监督和有监督表示学习。大多数无监督表示学习方法利用自动编码器(如去噪自动编码器和稀疏自动编码器等)中的隐变量作为表示。 目前出现的变分自动编码器能够更好的容忍噪声和异常值。 然而,推断给定数据的潜在结构几乎是不可能的。 目前有一些近似推断的策略。 此外,一些无监督表示学习方法旨在近似某种特定的相似性度量。提出了一种无监督的相似性保持表示学习框架,该框架使用矩阵分解来保持成对的DTW相似性。 通过学习保持DTW的shaplets,即在转换后的空间中的欧式距离近似原始数据的真实DTW距离。有监督表示学习方法可以利用数据的标签信息,更好地捕获数据的语义结构。 孪生网络和三元组网络是目前两种比较流行的模型,它们的目标是最大化类别之间的距离并最小化了类别内部的距离。

VIP内容

图结构的开发是有效学习保存有用信息的节点表示的关键。图的一个显著特性是,从全局的角度来看,存在一个潜在的节点层次分组,其中每个节点根据其相邻节点组成的上下文来表示其对特定组的隶属关系。在对邻域结构建模时,以往的研究大多忽略了这些潜在群体和节点对不同群体的隶属关系,更不用说层次结构了。因此,它们不能全面理解图中不同上下文下的节点。本文提出了一种新的层次注意力隶属度模型用于图嵌入,其中每个节点的潜在隶属度是根据其相邻上下文动态发现的。在聚合相邻状态生成节点嵌入时,需要同时进行群级和个体级的注意力。我们引入结构约束来显式规范每个节点的推断成员关系,这样就捕获了定义良好的分层分组结构。该模型在包括引文网络和社会网络在内的各种图的节点分类和链接预测任务上优于一组先进的图嵌入解决方案。定性评价将学习到的节点嵌入和推断出的成员关系可视化,证明了成员层次的概念,使图中可解释的嵌入学习成为可能。

成为VIP会员查看完整内容
0
13

最新论文

We present a novel generalized zero-shot algorithm to recognize perceived emotions from gestures. Our task is to map gestures to novel emotion categories not encountered in training. We introduce an adversarial, autoencoder-based representation learning that correlates 3D motion-captured gesture sequence with the vectorized representation of the natural-language perceived emotion terms using word2vec embeddings. The language-semantic embedding provides a representation of the emotion label space, and we leverage this underlying distribution to map the gesture-sequences to the appropriate categorical emotion labels. We train our method using a combination of gestures annotated with known emotion terms and gestures not annotated with any emotions. We evaluate our method on the MPI Emotional Body Expressions Database (EBEDB) and obtain an accuracy of $58.43\%$. This improves the performance of current state-of-the-art algorithms for generalized zero-shot learning by $25$--$27\%$ on the absolute.

0
0
下载
预览
参考链接
Top