专家系统(Expert Systems)发表的论文涉及知识工程的各个方面,包括知识获取和表达的各个方法和技术,以及它们在基于这些方法和技术的系统(包括专家系统)构建中的应用。详细的科学评价是任何论文的重要组成部分。除了传统的应用领域,如软件与需求工程、人机交互和人工智能,我们还瞄准了这些技术的新兴市场,如商业、经济、市场研究和医疗卫生保健。向这一新的重点的转变将以一系列特别问题为标志,这些问题包括热点和新出现的主题。 官网地址:http://dblp.uni-trier.de/db/journals/es/

Knowledge-based systems reason over some knowledge base. Hence, an important issue for such systems is how to acquire the knowledge needed for their inference. This paper assesses active learning methods for acquiring knowledge for "static code warnings". Static code analysis is a widely-used methods for detecting bugs and security vulnerabilities in software systems. As software becomes more complex, analysis tools also report lists of increasingly complex warnings that developers need to address on a daily basis. Such static code analysis tools often usually over-cautious; i.e. they often offer many warns about spurious issues. Previous research work shows that about 35% to 91% warnings reported as bugs by SA tools are actually unactionable (i.e., warnings that would not be acted on by developers because they are falsely suggested as bugs). Experienced developers know which errors are important and which can be safely ignoredHow can we capture that experience? This paper reports on an incremental AI tool that watches humans reading false alarm reports. Using an incremental support vector machine mechanism, this AI tool can quickly learn to distinguish spurious false alarms from more serious matters that deserve further attention. In this work, nine open source projects are employed to evaluate our proposed model on the features extracted by previous researchers and identify the actionable warnings in priority order given by our algorithm. We observe that our model can identify over 90% of actionable warnings when our methods tell humans to ignore 70 to 80% of the warnings.

0+
0+
下载
预览

Knowledge-based systems reason over some knowledge base. Hence, an important issue for such systems is how to acquire the knowledge needed for their inference. This paper assesses active learning methods for acquiring knowledge for "static code warnings". Static code analysis is a widely-used methods for detecting bugs and security vulnerabilities in software systems. As software becomes more complex, analysis tools also report lists of increasingly complex warnings that developers need to address on a daily basis. Such static code analysis tools often usually over-cautious; i.e. they often offer many warns about spurious issues. Previous research work shows that about 35% to 91% warnings reported as bugs by SA tools are actually unactionable (i.e., warnings that would not be acted on by developers because they are falsely suggested as bugs). Experienced developers know which errors are important and which can be safely ignoredHow can we capture that experience? This paper reports on an incremental AI tool that watches humans reading false alarm reports. Using an incremental support vector machine mechanism, this AI tool can quickly learn to distinguish spurious false alarms from more serious matters that deserve further attention. In this work, nine open source projects are employed to evaluate our proposed model on the features extracted by previous researchers and identify the actionable warnings in priority order given by our algorithm. We observe that our model can identify over 90% of actionable warnings when our methods tell humans to ignore 70 to 80% of the warnings.

0+
0+
下载
预览

Mammography is often used as the most common laboratory method for the detection of breast cancer, yet associated with the high cost and many side effects. Machine learning prediction as an alternative method has shown promising results. This paper presents a method based on a multilayer fuzzy expert system for the detection of breast cancer using an extreme learning machine (ELM) classification model integrated with radial basis function (RBF) kernel called ELM-RBF, considering the Wisconsin dataset. The performance of the proposed model is further compared with a linear-SVM model. The proposed model outperforms the linear-SVM model with RMSE, R2, MAPE equal to 0.1719, 0.9374 and 0.0539, respectively. Furthermore, both models are studied in terms of criteria of accuracy, precision, sensitivity, specificity, validation, true positive rate (TPR), and false-negative rate (FNR). The ELM-RBF model for these criteria presents better performance compared to the SVM model.

0+
0+
下载
预览

In this paper, we summarize work-in-progress on expert system support to automate some data deposit and release decisions within a data repository, and to generate custom license agreements for those data transfers. Our approach formalizes via a logic programming language the privacy-relevant aspects of laws, regulations, and best practices, supported by legal analysis documented in legal memoranda. This formalization enables automated reasoning about the conditions under which a repository can transfer data, through interrogation of users, and the application of formal rules to the facts obtained from users. The proposed system takes the specific conditions for a given data release and produces a custom data use agreement that accurately captures the relevant restrictions on data use. This enables appropriate decisions and accurate licenses, while removing the bottleneck of lawyer effort per data transfer. The operation of the system aims to be transparent, in the sense that administrators, lawyers, institutional review boards, and other interested parties can evaluate the legal reasoning and interpretation embodied in the formalization, and the specific rationale for a decision to accept or release a particular dataset.

0+
0+
下载
预览
父主题
Top