特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。 特征被检测后它可以从图像中被抽取出来。这个过程可能需要许多图像处理的计算机。其结果被称为特征描述或者特征向量。

Machine learning-based lithography hotspot detection has been deeply studied recently, from varies feature extraction techniques to efficient learning models. It has been observed that such machine learning-based frameworks are providing satisfactory metal layer hotspot prediction results on known public metal layer benchmarks. In this work, we seek to evaluate how these machine learning-based hotspot detectors generalize to complicated patterns. We first introduce a automatic layout generation tool that can synthesize varies layout patterns given a set of design rules. The tool currently supports both metal layer and via layer generation. As a case study, we conduct hotspot detection on the generated via layer layouts with representative machine learning-based hotspot detectors, which shows that continuous study on model robustness and generality is necessary to prototype and integrate the learning engines in DFM flows. The source code of the layout generation tool will be available at https://github. com/phdyang007/layout-generation.

0+
0+
下载
预览

The objective of this work is to improve the accuracy of building demand forecasting. This is a more challenging task than grid level forecasting. For the said purpose, we develop a new technique called recurrent transform learning (RTL). Two versions are proposed. The first one (RTL) is unsupervised; this is used as a feature extraction tool that is further fed into a regression model. The second formulation embeds regression into the RTL framework leading to regressing recurrent transform learning (R2TL). Forecasting experiments have been carried out on three popular publicly available datasets. Both of our proposed techniques yield results superior to the state-of-the-art like long short term memory network, echo state network and sparse coding regression.

0+
0+
下载
预览
Top