Boosting 方法是一种用来提高弱分类算法准确度的方法,这种方法通过构造一个预测函数系列,然后以一定的方式将他们组合成一个预测函数。Boosting是一种提高任意给定学习算法准确度的方法。它的思想起源于 Valiant提出的 PAC ( Probably Approxi mately Correct)学习模型。

最新论文

Designing effective defense against adversarial attacks is a crucial topic as deep neural networks have been proliferated rapidly in many security-critical domains such as malware detection and self-driving cars. Conventional defense methods, although shown to be promising, are largely limited by their single-source single-cost nature: The robustness promotion tends to plateau when the defenses are made increasingly stronger while the cost tends to amplify. In this paper, we study principles of designing multi-source and multi-cost schemes where defense performance is boosted from multiple defending components. Based on this motivation, we propose a multi-source and multi-cost defense scheme, Adversarially Trained Model Switching (AdvMS), that inherits advantages from two leading schemes: adversarial training and random model switching. We show that the multi-source nature of AdvMS mitigates the performance plateauing issue and the multi-cost nature enables improving robustness at a flexible and adjustable combination of costs over different factors which can better suit specific restrictions and needs in practice.

0+
0+
下载
预览
更多最新论文
Top