人工生命(Artificial Life)于1993年秋已成为统一的研究人工系统的科学信息交流论坛,具有自然生命系统的行为特征,通过合成或模拟使用计算机(软件),机器人(硬件)和物理化学(人脑)的意义。每一期都有关于人工生命的前沿研究,这些研究将提高我们对生命系统各个方面的认识,如:人工化学和生命的起源、系统与合成生物学、感知,认知和行为、群体的集体行为、进化与生态动力学、开放性和创造性、社会组织与文化演变、对社会及科技的影响、应用于生物学、医学、商业、教育或娱乐。 官网地址:http://dblp.uni-trier.de/db/journals/alife/

Biological evolution provides a creative fount of complex and subtle adaptations, often surprising the scientists who discover them. However, because evolution is an algorithmic process that transcends the substrate in which it occurs, evolution's creativity is not limited to nature. Indeed, many researchers in the field of digital evolution have observed their evolving algorithms and organisms subverting their intentions, exposing unrecognized bugs in their code, producing unexpected adaptations, or exhibiting outcomes uncannily convergent with ones in nature. Such stories routinely reveal creativity by evolution in these digital worlds, but they rarely fit into the standard scientific narrative. Instead they are often treated as mere obstacles to be overcome, rather than results that warrant study in their own right. The stories themselves are traded among researchers through oral tradition, but that mode of information transmission is inefficient and prone to error and outright loss. Moreover, the fact that these stories tend to be shared only among practitioners means that many natural scientists do not realize how interesting and lifelike digital organisms are and how natural their evolution can be. To our knowledge, no collection of such anecdotes has been published before. This paper is the crowd-sourced product of researchers in the fields of artificial life and evolutionary computation who have provided first-hand accounts of such cases. It thus serves as a written, fact-checked collection of scientifically important and even entertaining stories. In doing so we also present here substantial evidence that the existence and importance of evolutionary surprises extends beyond the natural world, and may indeed be a universal property of all complex evolving systems.

0+
0+
下载
预览

In this paper we propose an approach for measuring growth of complexity of emerging patterns in complex systems such as cellular automata. We discuss several ways how a metric for measuring the complexity growth can be defined. This includes approaches based on compression algorithms and artificial neural networks. We believe such a metric can be useful for designing systems that could exhibit open-ended evolution, which itself might be a prerequisite for development of general artificial intelligence. We conduct experiments on 1D and 2D grid worlds and demonstrate that using the proposed metric we can automatically construct computational models with emerging properties similar to those found in the Conway's Game of Life, as well as many other emergent phenomena. Interestingly, some of the patterns we observe resemble forms of artificial life. Our metric of structural complexity growth can be applied to a wide range of complex systems, as it is not limited to cellular automata.

0+
0+
下载
预览

Nature's spectacular inventiveness, reflected in the enormous diversity of form and function displayed by the biosphere, is a feature of life that distinguishes living most strongly from nonliving. It is, therefore, not surprising that this aspect of life should become a central focus of artificial life. We have known since Darwin that the diversity is produced dynamically, through the process of evolution; this has led life's creative productivity to be called Open-Ended Evolution (OEE) in the field. This article introduces the second of two special issues on current research in OEE and provides an overview of the contents of both special issues. Most of the work was presented at a workshop on open-ended evolution that was held as a part of the 2018 Conference on Artificial Life in Tokyo, and much of it had antecedents in two previous workshops on open-ended evolution at artificial life conferences in Cancun and York. We present a simplified categorization of OEE and summarize progress in the field as represented by the articles in this special issue.

0+
0+
下载
预览

Artificial life simulations are an important tool in the study of ecological phenomena that can be difficult to examine directly in natural environments. Recent work has established the soundscape as an ecologically important resource and it has been proposed that the differentiation of animal vocalizations within a soundscape is driven by the imperative of intraspecies communication. The experiments in this paper test that hypothesis in a simulated soundscape in order to verify the feasibility of intraspecies communication as a driver of acoustic niche differentiation. The impact of intraspecies communication is found to be a significant factor in the division of a soundscape's frequency spectrum when compared to simulations where the need to identify signals from conspecifics does not drive the evolution of signalling. The method of simulating the effects of interspecies interactions on the soundscape is positioned as a tool for developing artificial life agents that can inhabit and interact with physical ecosystems and soundscapes.

0+
0+
下载
预览

We report a new system of artificial life called Lenia (from Latin lenis "smooth"), a two-dimensional cellular automaton with continuous space-time-state and generalized local rule. Computer simulations show that Lenia supports a great diversity of complex autonomous patterns or "lifeforms" bearing resemblance to real-world microscopic organisms. More than 400 species in 18 families have been identified, many discovered via interactive evolutionary computation. They differ from other cellular automata patterns in being geometric, metameric, fuzzy, resilient, adaptive, and rule-generic. We present basic observations of the system regarding the properties of space-time and basic settings. We provide a broad survey of the lifeforms, categorize them into a hierarchical taxonomy, and map their distribution in the parameter hyperspace. We describe their morphological structures and behavioral dynamics, propose possible mechanisms of their self-propulsion, self-organization and plasticity. Finally, we discuss how the study of Lenia would be related to biology, artificial life, and artificial intelligence.

0+
0+
下载
预览

Self-organization can be broadly defined as the ability of a system to display ordered spatio-temporal patterns solely as the result of the interactions among the system components. Processes of this kind characterize both living and artificial systems, making self-organization a concept that is at the basis of several disciplines, from physics to biology to engineering. Placed at the frontiers between disciplines, Artificial Life (ALife) has heavily borrowed concepts and tools from the study of self-organization, providing mechanistic interpretations of life-like phenomena as well as useful constructivist approaches to artificial system design. Despite its broad usage within ALife, the concept of self-organization has been often excessively stretched or misinterpreted, calling for a clarification that could help with tracing the borders between what can and cannot be considered self-organization. In this review, we discuss the fundamental aspects of self-organization and list the main usages within three primary ALife domains, namely "soft" (mathematical/computational modeling), "hard" (physical robots), and "wet" (chemical/biological systems) ALife. Finally, we discuss the usefulness of self-organization within ALife studies, point to perspectives for future research, and list open questions.

0+
0+
下载
预览

In this article, we provide and overview of what we consider to be some of the most pressing research questions facing the fields of artificial intelligence (AI) and computational intelligence (CI); with the latter focusing on algorithms that are inspired by various natural phenomena. We demarcate these questions using five unique Rs - namely, (i) rationalizability, (ii) resilience, (iii) reproducibility, (iv) realism, and (v) responsibility. Notably, just as air serves as the basic element of biological life, the term AIR5 - cumulatively referring to the five aforementioned Rs - is introduced herein to mark some of the basic elements of artificial life (supporting the sustained growth of AI and CI). A brief summary of each of the Rs is presented, highlighting their relevance as pillars of future research in this arena.

0+
0+
下载
预览

In this article, we provide and overview of what we consider to be some of the most pressing research questions facing the field of artificial intelligence (AI); as well as its sub-field of computational intelligence (CI). We demarcate these questions using five unique Rs - namely, (i) rationalizability, (ii) resilience, (iii) reproducibility, (iv) realism, and (v) responsibility. Just as air serves as the basic element of biological life, the term AIR5 - cumulatively referring to the five aforementioned Rs - is introduced herein to mark some of the basic elements of artificial life (supporting the sustained growth of AI and CI). A brief summary of each of the Rs is presented, highlighting their relevance as pillars of future research in this arena.

0+
0+
下载
预览
父主题
Top