对抗学习是一种机器学习技术,旨在通过提供欺骗性输入来欺骗模型。最常见的原因是导致机器学习模型出现故障。大多数机器学习技术旨在处理特定的问题集,其中从相同的统计分布(IID)生成训练和测试数据。当这些模型应用于现实世界时,对手可能会提供违反该统计假设的数据。可以安排此数据来利用特定漏洞并破坏结果。

VIP内容

文本风格迁移是近年来自然语言处理领域的热点问题之一,旨在保留文本内容的基础上通过编辑或生成的方式更改文本的特定风格或属性(如情感、时态和性别等).文章旨在梳理已有的技术,以推进该方向的研究.首先,给出文本风格迁移问题的定义及其面临的挑战;然后,对已有方法进行分类综述,重点介绍基于无监督学习的文本风格迁移方法并将其进一步分为隐式和显式两类方法,对各类方法在实现机制、优势、局限性和性能等方面进行分析和比较;同时,还通过实验比较了几种代表性方法在风格迁移准确率、文本内容保留和困惑度等自动化评价指标上的性能;最后,对文本风格迁移研究进行总结和展望.

http://www.jos.org.cn/jos/article/abstract/6544

成为VIP会员查看完整内容
0
17

最新内容

Glioblastoma Multiforme (GBM) is a malignant brain cancer forming around 48% of al brain and Central Nervous System (CNS) cancers. It is estimated that annually over 13,000 deaths occur in the US due to GBM, making it crucial to have early diagnosis systems that can lead to predictable and effective treatment. The most common treatment after GBM diagnosis is chemotherapy, which works by sending rapidly dividing cells to apoptosis. However, this form of treatment is not effective when the MGMT promoter sequence is methylated, and instead leads to severe side effects decreasing patient survivability. Therefore, it is important to be able to identify the MGMT promoter methylation status through non-invasive magnetic resonance imaging (MRI) based machine learning (ML) models. This is accomplished using the Brain Tumor Segmentation (BraTS) 2021 dataset, which was recently used for an international Kaggle competition. We developed four primary models - two radiomic models and two CNN models - each solving the binary classification task with progressive improvements. We built a novel ML model termed as the Intermediate State Generator which was used to normalize the slice thicknesses of all MRI scans. With further improvements, our best model was able to achieve performance significantly ($p < 0.05$) better than the best performing Kaggle model with a 6% increase in average cross-validation accuracy. This improvement could potentially lead to a more informed choice of chemotherapy as a treatment option, prolonging lives of thousands of patients with GBM each year.

0
0
下载
预览

最新论文

Glioblastoma Multiforme (GBM) is a malignant brain cancer forming around 48% of al brain and Central Nervous System (CNS) cancers. It is estimated that annually over 13,000 deaths occur in the US due to GBM, making it crucial to have early diagnosis systems that can lead to predictable and effective treatment. The most common treatment after GBM diagnosis is chemotherapy, which works by sending rapidly dividing cells to apoptosis. However, this form of treatment is not effective when the MGMT promoter sequence is methylated, and instead leads to severe side effects decreasing patient survivability. Therefore, it is important to be able to identify the MGMT promoter methylation status through non-invasive magnetic resonance imaging (MRI) based machine learning (ML) models. This is accomplished using the Brain Tumor Segmentation (BraTS) 2021 dataset, which was recently used for an international Kaggle competition. We developed four primary models - two radiomic models and two CNN models - each solving the binary classification task with progressive improvements. We built a novel ML model termed as the Intermediate State Generator which was used to normalize the slice thicknesses of all MRI scans. With further improvements, our best model was able to achieve performance significantly ($p < 0.05$) better than the best performing Kaggle model with a 6% increase in average cross-validation accuracy. This improvement could potentially lead to a more informed choice of chemotherapy as a treatment option, prolonging lives of thousands of patients with GBM each year.

0
0
下载
预览
参考链接
Top
微信扫码咨询专知VIP会员