主题: GANs in computer vision: Introduction to generative learning

主要内容: 在这个综述系列文章中,我们将重点讨论计算机视觉应用程序的大量GANs。具体地说,我们将慢慢地建立在导致产生性对抗网络(GAN)进化的思想和原则之上。我们将遇到不同的任务,如条件图像生成,3D对象生成,视频合成。

目录:

  • 对抗学习
  • GAN(生成对抗网络)
  • 条件生成对抗网
  • 基于深度卷积
  • 生成对抗网络的无监督表示学习
  • Info GAN: Info最大化生成对抗网的表征学习

一般来说,数据生成方法存在于各种各样的现代深度学习应用中,从计算机视觉到自然语言处理。在这一点上,我们可以用肉眼生成几乎无法区分的生成数据。生成性学习大致可分为两大类:a)变分自编码器(VAE)和b)生成性对抗网络(GAN)。

成为VIP会员查看完整内容
0
44

相关内容

计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

【导读】来自加州大学圣地亚哥分校《计算机视觉中的领域自适应》中生成式对抗网络GAN介绍

成为VIP会员查看完整内容
0
68

【导读】慕尼黑大学开设的《高级深度学习》技术课程,重点介绍计算机视觉的前沿深度学习技术。最新一期介绍了《生成式对抗网络》进展,讲述了GAN的知识体系,值得关注。

成为VIP会员查看完整内容
0
93

【导读】元学习旨在学会学习,是当下研究热点之一。最近来自爱丁堡大学的学者发布了关于元学习最新综述论文《Meta-Learning in Neural Networks: A Survey》,值得关注,详述了元学习体系,包括定义、方法、应用、挑战,成为不可缺少的文献。

近年来,元学习领域,或者说“学会学习的学习”,引起了人们极大的兴趣。与传统的人工智能方法(使用固定的学习算法从头开始解决给定的任务)不同,元学习的目的是改进学习算法本身,考虑到多次学习的经验。这个范例提供了一个机会来解决深度学习的许多传统挑战,包括数据和计算瓶颈,以及泛化的基本问题。在这项综述中,我们描述了当代元学习的景观。我们首先讨论元学习的定义,并将其定位于相关领域,如迁移学习、多任务学习和超参数优化。然后,我们提出了一个新的分类法,对元学习方法的空间进行了更全面的细分。我们综述了元学习的一些有前途的应用和成功案例,包括小样本学习、强化学习和体系架构搜索。最后,我们讨论了突出的挑战和未来研究的有希望的领域。

https://arxiv.org/abs/2004.05439

概述

现代机器学习模型通常是使用手工设计的固定学习算法,针对特定任务从零开始进行训练。基于深度学习的方法在许多领域都取得了巨大的成功[1,2,3]。但是有明显的局限性[4]。例如,成功主要是在可以收集或模拟大量数据的领域,以及在可以使用大量计算资源的领域。这排除了许多数据本质上是稀有或昂贵的[5],或者计算资源不可用的应用程序[6,7]。

元学习提供了另一种范式,机器学习模型可以在多个学习阶段获得经验——通常覆盖相关任务的分布——并使用这些经验来改进未来的学习性能。这种“学会学习”[8]可以带来各种好处,如数据和计算效率,它更适合人类和动物的学习[9],其中学习策略在一生和进化时间尺度上都得到改善[10,9,11]。机器学习在历史上是建立在手工设计的特征上的模型,而特征的选择往往是最终模型性能的决定因素[12,13,14]。深度学习实现了联合特征和模型学习的承诺[15,16],为许多任务提供了巨大的性能改进[1,3]。神经网络中的元学习可以看作是集成联合特征、模型和算法学习的下一步。神经网络元学习有着悠久的历史[17,18,8]。然而,它作为推动当代深度学习行业前沿的潜力,导致了最近研究的爆炸性增长。特别是,元学习有可能缓解当代深度学习[4]的许多主要批评,例如,通过提供更好的数据效率,利用先验知识转移,以及支持无监督和自主学习。成功的应用领域包括:小样本图像识别[19,20]、无监督学习[21]、数据高效[22,23]、自导向[24]强化学习(RL)、超参数优化[25]和神经结构搜索(NAS)[26, 27, 28]。

在文献中可以找到许多关于元学习的不同观点。特别是由于不同的社区对这个术语的使用略有不同,所以很难定义它。与我们[29]相关的观点认为,元学习是管理“没有免费午餐”定理[30]的工具,并通过搜索最适合给定问题或问题族的算法(归纳偏差)来改进泛化。然而,从广义上来说,这个定义可以包括迁移、多任务、特征选择和模型集成学习,这些在今天通常不被认为是元学习。另一个关于元学习[31]的观点广泛地涵盖了基于数据集特性的算法选择和配置技术,并且很难与自动机器学习(AutoML)[32]区分开来。在这篇论文中,我们关注当代的神经网络元学习。我们将其理解为算法或归纳偏差搜索,但重点是通过端到端学习明确定义的目标函数(如交叉熵损失、准确性或速度)来实现的。

因此,本文提供了一个独特的,及时的,最新的调查神经网络元学习领域的快速增长。相比之下,在这个快速发展的领域,以往的研究已经相当过时,或者关注于数据挖掘[29、33、34、35、36、37、31]、自动[32]的算法选择,或者元学习的特定应用,如小样本学习[38]或神经架构搜索[39]。

我们讨论元学习方法和应用。特别是,我们首先提供了一个高层次的问题形式化,它可以用来理解和定位最近的工作。然后,我们在元表示、元目标和元优化器方面提供了一种新的方法分类。我们调查了几个流行和新兴的应用领域,包括少镜头、强化学习和架构搜索;并对相关的话题如迁移学习、多任务学习和自动学习进行元学习定位。最后,我们讨论了尚未解决的挑战和未来研究的领域。

未来挑战:

-元泛化 元学习在不同任务之间面临着泛化的挑战,这与传统机器学习中在不同实例之间进行泛化的挑战类似。

  • 任务分布的多模态特性
  • 任务族
  • 计算代价
  • 跨模态迁移和异构任务

总结

元学习领域最近出现了快速增长的兴趣。这带来了一定程度的混乱,比如它如何与邻近的字段相关联,它可以应用到什么地方,以及如何对它进行基准测试。在这次综述中,我们试图通过从方法学的角度对这一领域进行彻底的调查来澄清这些问题——我们将其分为元表示、元优化器和元目标的分类;从应用的角度来看。我们希望这项调查将有助于新人和实践者在这个不断增长的领域中定位自己,并强调未来研究的机会。

成为VIP会员查看完整内容
0
133

O’Reilly Media 2019年新出版的关于GAN的书Generative Deep Learning_Teaching Machines to Paint, Write, Compose, and Play. 《生成式深度学习》是关于生成模型的最新指南——特别是如何构建最先进的深度学习模型,这样的模型可以绘画、写作、作曲和玩游戏。 更重要的是,这本书能让读者深入了解生成式深度学习,并构建能够做出各种令人惊叹的事情的模型

成为VIP会员查看完整内容
Generative Deep Learning - David Foster.pdf
0
64
小贴士
相关VIP内容
专知会员服务
68+阅读 · 2020年6月28日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
31+阅读 · 2019年8月26日
相关资讯
关于GANs在医学图像领域应用的总结
人工智能前沿讲习班
24+阅读 · 2019年6月4日
最新《生成式对抗网络GAN进展》论文
专知
82+阅读 · 2019年4月5日
万字综述之生成对抗网络(GAN)
PaperWeekly
23+阅读 · 2019年3月19日
生成对抗网络在图像翻译上的应用【附PPT与视频资料】
人工智能前沿讲习班
6+阅读 · 2018年11月28日
生成对抗网络的研究进展与趋势
中国计算机学会
15+阅读 · 2018年11月14日
探幽深度生成模型的两种方法:VAE和GAN
AI前线
11+阅读 · 2018年3月10日
【简介】生成式对抗网络简介
GAN生成式对抗网络
7+阅读 · 2017年9月16日
相关论文
A Probe into Understanding GAN and VAE models
Jingzhao Zhang,Lu Mi,Macheng Shen
6+阅读 · 2018年12月13日
He Huang,Changhu Wang,Philip S. Yu,Chang-Dong Wang
4+阅读 · 2018年11月12日
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks
Xintao Wang,Ke Yu,Shixiang Wu,Jinjin Gu,Yihao Liu,Chao Dong,Chen Change Loy,Yu Qiao,Xiaoou Tang
5+阅读 · 2018年9月17日
ClusterGAN : Latent Space Clustering in Generative Adversarial Networks
Sudipto Mukherjee,Himanshu Asnani,Eugene Lin,Sreeram Kannan
5+阅读 · 2018年9月10日
Huiting Hong,Xin Li,Mingzhong Wang
4+阅读 · 2018年5月21日
Minhyeok Lee,Junhee Seok
4+阅读 · 2018年5月1日
Pierre-Luc Dallaire-Demers,Nathan Killoran
3+阅读 · 2018年4月30日
Swami Sankaranarayanan,Yogesh Balaji,Carlos D. Castillo,Rama Chellappa
3+阅读 · 2018年4月1日
Joachim D. Curtó,Irene C. Zarza,Fernando De La Torre,Irwin King,Michael R. Lyu
7+阅读 · 2018年1月27日
Orest Kupyn,Volodymyr Budzan,Mykola Mykhailych,Dmytro Mishkin,Jiri Matas
8+阅读 · 2018年1月16日
Top