主题: 2019年人工智能的发展

摘要:

人工智能是一个很宽泛的概念,概括而言是对人的意识和思维过程的模拟,利用机器学习和数据分析方法赋予机器类人的能力。人工智能将提升社会劳动生产率,特别是在有效降低劳动成本、优化产品和服务、创造新市场和就业等方面为人类的生产和生活带来革命性的转变。据Sage预测,到2030年人工智能的出现将为全球GDP带来额外14%的提升,相当于15.7万亿美元的增长。全球范围内越来越多的政府和企业组织逐渐认识到人工智能在经济和战略上的重要性,并从国家战略和商业活动上涉足人工智能。全球人工智能市场将在未来几年经历现象级的增长。据中国产业信息网和中国信息通信研究院数据,世界人工智能市场将在2020年达到6800亿元人民币,复合增长率达26.2%,而中国人工智能市场也将在2020年达到710亿元人民币,复合增长率达44.5%。

我国发展人工智能具有多个方面的优势,比如开放的市场环境、海量的数据资源、强有力的战略引领和政策支持、丰富的应用场景等,但仍存在基础研究和原创算法薄弱、高端元器件缺乏、没有具备国际影响力的人工智能开放平台等短板。此份报告不但对人工智能关键技术(计算机视觉技术、自然语言处理技术、跨媒体分析推理技术、智适应学习技术、群体智能技术、自主无人系统技术、智能芯片技术、脑机接口技术等)、人工智能典型应用产业与场景(安防、金融、零售、交通、教育、医疗、制造、健康等)做出了梳理,而且同时强调人工智能开放平台的重要性,并列举百度Apollo开放平台、阿里云城市大脑、腾讯觅影AI辅诊开放平台、科大讯飞智能语音开放创新平台、商汤智能视觉开放创新平台、松鼠AI智适应教育开放平台、京东人工智能开放平台NeuHub、搜狗人工智能开放平台等典型案例呈现给读者。最后,列举国内外优秀的人工智能公司与读者共勉。随着技术的进步、应用场景的丰富、开放平台的涌现和人工智能公司的创新活动,我国整个人工智能行业的生态圈也会逐步完善,从而为智慧社会的建设贡献巨大力量。

成为VIP会员查看完整内容
2
103

相关内容

人工智能(Artificial Intelligence, AI )是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支。

本白皮书从人工智能数据安全的内涵出发,首次提出人工智能数据安全的体系架构,在系统梳理人工智能数据安全风险和安全应用情况的基础上,总结了国内外人工智能数据安全治理现状,研究提出了我国人工智能数据安全治理建议。

成为VIP会员查看完整内容
3
78

赛迪智库正式发布《量子计算发展白皮书(2019年)》(以下简称《白皮书》)。《白皮书》阐述了量子计算的基本内涵,系统梳理量子计算的技术路线及发展路线图,介绍了国内外发展态势,并提出了我国量子计算发展面临的挑战及相关对策建议。

成为VIP会员查看完整内容
1
57

德勤科技、传媒和电信行业联合推出《全球人工智能发展白皮书》。《全球人工智能发展白皮书》深入研究人工智能技术步入商业化阶段后,在全球各主要城市的创新融合应用概况,以及其将对金融、教育、数字政务、医疗、无人驾驶、零售、制造业、智慧城市等各行业带来的深刻变革。

成为VIP会员查看完整内容
3
139
小贴士
相关资讯
人工智能商业化研究报告(2019)
腾讯大讲堂
12+阅读 · 2019年7月9日
《中国人工智能发展报告2018》(附PDF下载)
走向智能论坛
12+阅读 · 2018年7月17日
IDC发布对话式人工智能白皮书|附下载
人工智能学家
6+阅读 · 2018年3月20日
权威发布:新一代人工智能发展白皮书(2017)
全球人工智能
7+阅读 · 2018年2月25日
《人工智能标准化白皮书(2018版)》发布|附下载
人工智能学家
12+阅读 · 2018年1月21日
相关论文
A Comprehensive Survey on Transfer Learning
Fuzhen Zhuang,Zhiyuan Qi,Keyu Duan,Dongbo Xi,Yongchun Zhu,Hengshu Zhu,Hui Xiong,Qing He
91+阅读 · 2019年11月7日
Qingzhong Wang,Antoni B. Chan
3+阅读 · 2019年3月28日
Label Embedded Dictionary Learning for Image Classification
Shuai Shao,Yan-Jiang Wang,Bao-Di Liu,Weifeng Liu
4+阅读 · 2019年3月7日
Adversarial Transfer Learning
Garrett Wilson,Diane J. Cook
10+阅读 · 2018年12月6日
Meta-Transfer Learning for Few-Shot Learning
Qianru Sun,Yaoyao Liu,Tat-Seng Chua,Bernt Schiele
6+阅读 · 2018年12月6日
Catherine Wong,Neil Houlsby,Yifeng Lu,Andrea Gesmundo
4+阅读 · 2018年9月11日
Ignasi Clavera,Anusha Nagabandi,Ronald S. Fearing,Pieter Abbeel,Sergey Levine,Chelsea Finn
7+阅读 · 2018年3月30日
Duhyeon Bang,Hyunjung Shim
7+阅读 · 2018年1月28日
Anastasia Pentina,Christoph H. Lampert
3+阅读 · 2017年6月8日
Yike Liu,Abhilash Dighe,Tara Safavi,Danai Koutra
4+阅读 · 2017年4月12日
Top