项目名称: 基于迭代支撑集检测的稀疏信号重构算法的研究和拓展

项目编号: No.11201054

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 王亦伦

作者单位: 电子科技大学

项目金额: 22万元

中文摘要: 压缩感知由于其在医学成像,无线通信等众多领域的重大应用价值,成为近些年研究的一个热点问题。压缩感知的优势在于能够用远比经典的Nyquist采样率低的采样数据,准确重构出真实的未知稀疏信号。信号重构算法的设计需要考虑两个方面:一是较低的采样需求;第二是较快的重构速度。现有算法大都无法同时满足这两个方面。为了同时取得上述要求,针对快速递减信号,我提出了基于迭代支撑集检测的算法(简称ISD),取得了很好的效果,并发表于SIAM 会刊。利用快速递减特点,真实信号的支撑集检测采用了阀值的方法,检测到的部分支撑集信息帮助降低采样需要和提高信号的重构效果。在本项目中,我们将更加深入研究如何利用不同领域稀疏信号的特点和非零元素间的几何关系,显著提高支撑集的检测效果,进一步降低ISD算法的采样需求并提高重构速度;并将其从单一向量重构推广到多向量重构和低秩矩阵和张量重构;并对其做深入的理论分析和性能比较。

中文关键词: 稀疏优化;迭代支撑集检测;压缩感知;图像处理;模式识别

英文摘要: Compressive sensing is of great practical values in many fields such as medical imaging, wireless communications, and therefore recently becomes a hot topic in either academia or industry. Its significant advantage lies in the capability to reconstruct a true sparse signal using a sampling rate which is much lower than the classical Shannon-Nyquist sampling rate. The design of sparse signal reconstruction algorithms usually considers two aspects: the first one is low samping requirement and the second is fast reconstruction. However, most of the current existing algorithms fail to satisfy both simultaneously, even though they might be very good in terms of one single aspect. In order to achieve both, I propose a so called "iterative support detection " (ISD, for short) algorithm for the specific fast decaying sparse signals,since it is easy for us to detect the partial support information of the true signal from it. It achieves good numerical results and has been published in SIAM Journal on Imaging Sciences. The support detection makes use of the fast decaying property and adopts the threshold method. The detected partial support information of the true signal helps reduce the sampling requirement and improve the reconstruction quality. In this project, we will further improve ISD by considering more features

英文关键词: sparse optimization;iterative support detection;compressive sensing;image processing;pattern recognition

成为VIP会员查看完整内容
0

相关内容

CVPR 2022 Oral | 基于熵筛选的半监督三维旋转回归
专知会员服务
17+阅读 · 2022年4月18日
基于深度学习的视频超分辨率重构进展综述
专知会员服务
17+阅读 · 2022年3月7日
专知会员服务
29+阅读 · 2021年5月21日
专知会员服务
21+阅读 · 2021年3月25日
【AAAI2021】基于双任务一致性的半监督医学图像分割
专知会员服务
30+阅读 · 2021年2月7日
专知会员服务
29+阅读 · 2020年7月31日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
基于深度学习的多标签生成研究进展
专知会员服务
141+阅读 · 2020年4月25日
阿里开源大规模稀疏推荐模型训练/预测引擎DeepRec
机器学习与推荐算法
0+阅读 · 2022年4月15日
【速览】TPAMI丨泛化边缘保持和结构保持图像平滑模型
中国图象图形学学会CSIG
1+阅读 · 2021年10月15日
最全综述:基于深度学习的三维重建算法
极市平台
12+阅读 · 2020年3月17日
【学界】DeepMind论文:深度压缩感知,新框架提升GAN性能
GAN生成式对抗网络
14+阅读 · 2019年5月23日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Fast Circular Pattern Matching
Arxiv
0+阅读 · 2022年4月20日
Max-Margin Contrastive Learning
Arxiv
17+阅读 · 2021年12月21日
Arxiv
19+阅读 · 2020年7月21日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
小贴士
相关VIP内容
CVPR 2022 Oral | 基于熵筛选的半监督三维旋转回归
专知会员服务
17+阅读 · 2022年4月18日
基于深度学习的视频超分辨率重构进展综述
专知会员服务
17+阅读 · 2022年3月7日
专知会员服务
29+阅读 · 2021年5月21日
专知会员服务
21+阅读 · 2021年3月25日
【AAAI2021】基于双任务一致性的半监督医学图像分割
专知会员服务
30+阅读 · 2021年2月7日
专知会员服务
29+阅读 · 2020年7月31日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
基于深度学习的多标签生成研究进展
专知会员服务
141+阅读 · 2020年4月25日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
微信扫码咨询专知VIP会员