We consider the $\textit{Similarity Sketching}$ problem: Given a universe $[u] = \{0,\ldots, u-1\}$ we want a random function $S$ mapping subsets $A\subseteq [u]$ into vectors $S(A)$ of size $t$, such that similarity is preserved. More precisely: Given sets $A,B\subseteq [u]$, define $X_i = [S(A)[i] = S(B)[i]]$ and $X = \sum_{i\in [t]} X_i$. We want to have $E[X] = t\cdot J(A,B)$, where $J(A,B) = |A\cap B|/|A\cup B|$ and furthermore to have strong concentration guarantees (i.e. Chernoff-style bounds) for $X$. This is a fundamental problem which has found numerous applications in data mining, large-scale classification, computer vision, similarity search, etc. via the classic MinHash algorithm. The vectors $S(A)$ are also called $\textit{sketches}$. The seminal $t\times\textit{MinHash}$ algorithm uses $t$ random hash functions $h_1,\ldots, h_t$, and stores $\left ( \min_{a\in A} h_1(A),\ldots, \min_{a\in A} h_t(A) \right )$ as the sketch of $A$. The main drawback of MinHash is, however, its $O(t\cdot |A|)$ running time, and finding a sketch with similar properties and faster running time has been the subject of several papers. Addressing this, Li et al.~[NIPS'12] introduced $\textit{one permutation hashing (OPH)}$, which creates a sketch of size $t$ in $O(t + |A|)$ time, but with the drawback that possibly some of the $t$ entries are ``empty'' when $|A| = O(t)$. One could argue that sketching is not necessary in this case, however the desire in most applications is to have $\textit{one}$ sketching procedure that works for sets of all sizes. Therefore, filling out these empty entries is the subject of several follow-up papers initiated by Shrivastava and Li~[ICML'14]. However, these ``densification'' schemes fail to provide good concentration bounds exactly in the case $|A| = O(t)$, where they are needed. (continued...)


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
139+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
23+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
71+阅读 · 2016年11月26日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 5月1日
Arxiv
0+阅读 · 5月1日
Arxiv
0+阅读 · 4月30日
Arxiv
0+阅读 · 4月27日
Arxiv
0+阅读 · 4月26日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
71+阅读 · 2016年11月26日
相关论文
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员